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Abstract 
Spectral data from airborne and ground surveys enable mapping of the mineralogy and chemistry of soils in a 

semi-arid terrain of Northwest Queensland. The study site is a region of low relief, 20 km southeast of 

Duchess near Mount Isa. The airborne hyperspectral survey identified more than twenty surface components 

including vegetation, ferric oxide, ferrous iron, MgOH, and white mica. Field samples were analysed by 

spectrometer and X-ray diffraction to test surface units defined from the airborne data. The derived surface 

materials map is relevant to soil mapping and mineral exploration, and also provides insights into regolith 

development, sediment sources, and transport pathways, all key elements of landscape evolution. 

 

Key Words  
Hyperspectral; SWIR; XRD; paleochannel; regolith. 

 

Introduction 
Geological studies for mapping and mineral exploration routinely use airborne radiometric surveys. Airborne 

Hyperspectral scanners are a more recent development, with greater spatial resolution and moderate to high 

spectral resolution. Hyperspectral scanners discriminate a greater number of land surface components, 

enabling maps of surface cover, minerals, and chemistry to be made. These maps are supported by ground 

based spectral measurements of soil using a high resolution portable spectrometer and by X-Ray Diffraction 

analyses for minerals.   

   
Figure 1.  Location Map.  Figure 2. False colour image shows limited vegetation, drainage, and sample sites. 

 

The study area of 16 x 13 km lies southeast of Duchess, about 90 km southeast of Mount Isa (Figure 1). The 

hyperspectral survey was flown in August-September 2006 during very dry conditions when the vegetation 

cover was sparse (Figure 2) (Cudahy and others 2008). The airborne HyMap scanner measures 126 channels 

covering wavelengths from visible to short wavelength infra red (SWIR). The 126 data points for each 4.5 m 

pixel record the radiance at specific wavelengths, enabling reflectance spectra to be constructed for each of 

the approximately 10 M pixels in the study area. Absorption features in the spectra identify surface 

components within each pixel. The data were processed by CSIRO in Perth to produce twenty two image 

maps that show the distribution (abundance) of surface components (e.g. kaolin, Ferrous Fe), and in some 

instances, the chemical variability of a component (e.g. white mica composition). A subset of eight image 

maps was used to interpret surface materials across the entire landscape.  Surface mineral and chemistry 

maps can be applied to investigations including soil studies, mineral exploration, and landscape evolution.   
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Landforms and Geology 
The 1 sec Shuttle Radar Topography Mission data record a subdued topography with an elevation range of 

280 to 370 m (Figure 3). The bedrock geology forms the foundation of the landscape, and has a major 

influence on the surface materials. The type of bedrock, and factors including the presence or absence of an 

in-place weathered mantle, or cover of transported sediments, affect the mineral composition and chemical 

attributes at the surface. The oldest geology comprises Proterozoic Corella Formation (calcareous lithologies; 

metamorphosed sediments), intruded by the Proterozoic Saint Mungo Granite (porphyritic hornblende biotite 

granite). These rocks are overlain by sparsely preserved Cambrian sediments - Mount Birnie Beds, Inca 

Formation, Thorntonia Limestone, O’Hara Shale. Minor remnants of Mesozoic deposits occur on mesas and 

rises. Unconsolidated Cenozoic sediments occur on low areas (Figure 4).  
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Figure 3.  SRTM Topography (elevation in m). Figure 4. Geology map shows extensive Cenozoic cover in the 

north (yellow) on Proterozoic Corella Formation carbonates and metasediments mainly in the south (pink-

brown) and Saint Mungo Granite to the west (red). Cambrian limestone and sediments are blue, green, purple. 

 

Image Maps Derived from Hyperspectral Survey 
The hyperspectral data were processed using in-house software at CSIRO. All pixels were classified 

according to the presence or absence of diagnostic spectral absorption features. These classes indicate 

presence/absence of specific components of surface materials across the landscape. Within these classes, the 

depth of spectral absorption features was used to estimate abundance (highest abundance correlates with 

greatest depth of absorption feature). Variations in mineral composition within specific mineral groups, e.g. 

white mica, were determined from slight variations in the wavelength of diagnostic features (e.g. the 2200 

nm white mica absorption occurs at longer wavelengths with substitution of Fe and Mg cations in the lattice). 
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Figure 5. Surface minerals and chemistry map derived from hyperspectral survey. 
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Eight image maps were used to investigate the surface material characteristics: Aluminium Smectite; White 

Mica; Kaolin; Ferrous Iron; Ferric Oxide; Ferric Fe and MgOH; Silica (Hydrated); and False Colour. 

Polygons were constructed to depict areas of dominance or high abundance of components. Some areas rated 

highly in a number of components, and could be assigned to more than one surface mineral class.  Other 

areas contained low abundances in all mineral and chemical groups (Figure 5). 

 

Soil sampling and analysis 
Rock and soil samples were collected at twenty three locations in the study area (Figure 2). The soil samples 

were measured with an ASD portable spectrometer, which covers wavelengths from 350-2500 nm (visible to 

short wavelength infra red) at 1 nm increments. TSG software (http://www.ausspec.com/TSG.htm) was used 

to identify the mineralogy of the soil samples from their spectra (Figure 6). The software identifies up to two 

major components on the basis of SWIR spectral characteristics.  Additionally, the presence of iron oxide is 

determined by visible wavelength absorption features.  The VNIR-SWIR spectral determinations are most 

sensitive to OH bonds which occur in minerals such as montmorillonite, kaolinite, and white mica (illite-

muscovite), and to some carbonates (siderite), and hydrated silica, but are insensitive to other minerals such 

as silicates (quartz, feldspar).  

 
Figure 6.  Spectral analyses of soil samples (Column 1=sample no) identify up to two major mineral components 

from SWIR wavelengths (Columns 3-4) and one from visible wavelengths (Column 6). Variation in the 

wavelength of the ~2200 nm feature is related to cation substitution in clay lattices and is shown in Column 7. 

Opal = hydrated silica.  PX =  poorly crystalline; WX = well crystalline. See Figure 2 for locations. 

 

Further analyses using X-ray diffraction were completed on eighteen soil samples. Minerals such as quartz 

are highly diffractive of X-rays and so dominate most XRD analyses with high intensity features at 26.68 

and 20.9° 2θ (Figure 7). Clay minerals are less diffractive and produce relatively small peaks on the X-ray 

diffractograms. Identification of the mineralogy of mixed samples can be problematic due to the number of 

peaks, some of which become broad due to overlapping effects from similar minerals.  Nevertheless, the 

analyses show a generally good correlation between the HyMap-based land surface units and the mineralogy 

of soil samples determined by spectrometer and XRD methods. 
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Figure 7.  X-ray diffractogram of soil samples from sites 126, 128 and 132.  Quartz features dominate in all 

samples (intensity >4000) whereas other minerals are of much lower intensity.  Sample 126 contains muscovite, 

128 contains hornblende (edenite) and 132 contains dickite, a form of Kaolinite.   

 

Conclusions 
The surface mineral and chemistry map (Figure 5) derived from airborne and ground spectral surveys 

characterises the entire land surface based on abundance of specific minerals or chemistries. Integrated 

ground and airborne spectral surveys identify surface components not readily discernable to the naked eye, 

and provide validated coverage of project areas. Mineral components such as opaline silica can be identified 

prior to on-the-ground field surveys and flagged for checking and sampling. The surface components can be 

used to identify sediment sources, transport pathways and depositional areas to assist understanding of 

landscape evolution. They also reveal areas of outcropping or thinly covered bedrock in apparently uniform 

terrain, and identify erosional and depositional areas. The combination of airborne and ground spectral 

surveys provide a level of landscape characterisation not previously achieved, demonstrating proof of 

concept for surface material mapping over wide areas of Australia.   
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Abstract 
Surface soils from three land-use and land-use change studies in southern Australia were used to explore 

mid-infrared spectroscopy (MIRS) coupled with partial least squares regression (PLSR) to measure soil  

total C, total N and microbial biomass carbon (MBC). The soils were from agriculture (crop and pasture), 

forest plantation, and native vegetation land-uses. Prediction on the validation set for total C and total N  

(R
2
 = 0.94 and 0.86) were excellent, and that for MBC (R

2
 = 0.53) was fair. The methodology has sufficient 

accuracy across a range of soils for application to determine the effects of land-use on these key indicator 

soil properties. 

 

Key Words 
Mid-infrared reflectance spectroscopy, soil, carbon, nitrogen, microbial biomass. 

 

Introduction 
Soil organic matter is heterogeneous with a wide range of functional types having variable turnover rates and 

nutrient release potential. Land-use and land-use change can affect the quantity and quality of soil organic 

matter, thus affecting soil properties and plant growth. For example, trees planted on land previously 

managed for agriculture (usually pastures) in southern Australia have benefited from the relatively high soil 

fertility arising from past fertiliser application and N-fixation by legumes. However, declines in N-availability 

over a rotation have been observed (e.g., O’Connell et al. 2003), and a challenge for plantation managers is 

to better understand such changes so as to maintain and build soil fertility. 

 

Mid infrared reflectance spectroscopy (MIRS) has been demonstrated to be useful for the analysis of soils, 

including for total and various fractions of carbon, some nutrients, and soil texture (e.g., Janik et al. 2007, 

Viscarra Rossel et al. 2006). Once calibrated, it can be a cost-effective and rapid technique to assess soil 

fertility and health indices (e.g., Viscarra Rossel et al. 2008)  

 

The work reported here draws on previous studies from a wide range of land-uses, soil textures and annual 

rainfall in southern Australia to assess the accuracy of MIRS to predict soil total C, total N and microbial 

biomass carbon (MBC). 
 

Methods 
Sites and sampling 

Soils from three land-use / land-use change comparison studies were analysed: 

• Pasture – Eucalyptus globulus plantation: Thirty one paired sites in south-western Western Australia, 0–

10 cm depth, 4 replicates per site (n = 248) (O’Connell et al. 2003). Plantations were established on 

long-term pastures, and were sampled during late winter to early spring in the first rotation at 6 to 11 

years of age. 
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• Crop – Remnant vegetation: Thirty paired sites in north-eastern, north-western and south-western 

Victoria, 0–10 cm depth, 6 replicates per site (n = 360) (Mele and Crowley 2008). The remnant 

vegetation included land under native vegetation, whereas the cropped soils had been managed 

conventionally for cereal, legume, vegetable, citrus and grape production. 

• Pinus radiata plantation – Native forest (mixed Eucalyptus spp.): Eleven site-types across north-eastern 

Victoria and south-eastern NSW (3 or 4 sample plots per site-type), 0 – 5 and 5 – 10 cm depth, 3 

replicates per plot (n = 204) (Kasel and Bennett 2007). The study comprised pine plantations in their first 

and second rotations (ex-native forest, ex-pasture), regenerated woodlands (ex-pasture, mixed eucalypt) 

and rehabilitated forest (ex-pine plantation, ex-pasture), and sampled during late spring and late autumn. 
 

The three studies (n = 812) represented a wide range of soil textures (sandy to clay loam) and climate (mean 

annual rainfall 776 to 1400 mm). Each soil sample analysed was a composite of 6 to 9 cores. 
 

Soil total C, total N and microbial biomass carbon 

Total soil C and N were determined on finely ground (< 0.5 mm) and oven-dried (40
o
C) subsamples using a 

Leco CN analyser. Microbial biomass carbon (MBC) was measured on rewetted and incubated soil 

subsamples (< 2 mm) by the fumigation extraction method (Sparling and West 1988), using an extraction 

factor (kEC, 0.3 to 0.38) to convert the oxidisable organic-C flush to microbial-C, based on soil textures 

(Vance et al. 1987; Inubushi et al. 1991). 
 

MIRS 

Air-dried soil subsamples (< 2 mm) were finely ground in a vibrating puck mill for one minute. Mid-infrared 

diffuse reflectance spectra for these soils were collected using a PerkinElmer Spectrum One FT-IR 

spectrometer from 7800 to 450 /cm at 8 /cm resolution. Scans were co-added for one minute. A reference 

background spectrum was recorded at the start and after every thirty minutes or every 15 samples, whichever 

occurred sooner.  
 

PLSR 

Matlab (version 7.8.0.347) and PLS_Toolbox 4.2 were used to fit partial least squares regression (PLSR) 

calibration with leave-one-out cross-validations. Data were first transformed using a cube root (total C), 

square root (total N) or fourth root (MBC) to normalise the distributions. Spectra were preprocessed using 

multiplicative scatter correction (MSC-mean) followed by first derivative and auto scaling. One-third of the 

data, representing all land-uses, was randomly selected to form a validation subset and the rest used for the 

calibration subset.  
 

Results and discussion 
Total soil C varied from 5 to 187 g/kg, and total N from 0.25 to 7.52 g/kg (Figure 1a). Soil C to N ratio 

generally varied with land-use: lower (median = 16) for soils with a current or recent agricultural history 

(including E. globulus established on pasture) and higher (median = 21) for soils from forest / remnant 

vegetation land-uses (including P. radiata plantations). The overall correlation, between total N and total C 

was r = 0.86 (P < 0.001), and within land-uses correlations varied from 0.91 to 0.97 (P < 0.001). 
 

(a) (b)

 
Figure 1.  Scatter plots of (a) total N and total C, and (b) microbial biomass carbon (MBC) and total C. Values 

are means across replicate samples. 
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Soil MBC varied from 0.01 to 1.51 g/kg and was broadly correlated with total C (r = 0.76, P < 0.001, 

Figure 1b). Within land-uses, the correlation for cropped soils, generally having the lowest MBC values, was 

not significant, whereas correlations for other land-uses were significant (r = 0.72 to 0.96, P < 0.001). 

 

For simple illustrative purposes here, pasture, native forest / regenerated woodlands and remnant vegetation 

were used as a reference land-use (RLU) to present the effects of a subject land-use (SLU, i.e. plantation or 

crop, Figs 2a, b, c). The present study is not concerned with analysing these effects, rather their likely 

magnitude in relation to the accuracy of predictions of soil variables using MIRS-PLSR. Over all data, the 

SLU: RLU ratios for average data from paired land-uses varied: for total C (0.14 to 1.85), total N (0.16 to 

2.7) and MBC (0.14 to 3.24). Generally there was a wide scatter around the 1: 1 line, although notable was 

that total C and MBC were generally greater in the RLU, whereas there was little discernable difference 

between RLU and SLU for total N. 

 
(a) 

 

(b) 

 

(c) 

 

Figure 2. Scatter plots of (a) total C, (b) total N, and (c) microbial biomass carbon (MBC) in subject land-use 

(SLU) and that in reference land-use (RLU). SLU-RLU comparisons are: E. globulus plantation – pasture (WA), 

Pinus radiata plantation – native forest / regenerated woodland (Vic. / NSW), and crop – remnant vegetation 

(Vic.). Values are means across replicate samples. 

 

All MIRS-PLSR calibrations (Table 1) were significant at P < 0.001. Back-transformed predictions for 

total C (Figure 3a) were excellent, both for calibration (R
2
 = 0.96) and validation (R

2
 = 0.94) data subsets. 

Predictions for total N (Figure 3b) were respectively very good (R
2
 = 0.97) and good (R

2
 = 0.86). The 

calibration prediction for MBC (Figure 3c) was good (R
2
 = 0.73), despite MBC not being very well 

correlated with total C. MBC predictions for the validation subset had considerable scatter (R
2
 = 0.53), 

although fair for microbial biomass (Stenberg and Viscarra Rossel 2008), and bias for the higher values. 

 
Table 1.  Statistics for MIRS-PLSR calibration and validation for total C, total N and microbial biomass carbon 

(MBC). 

Variable Total C Total N MBC
 

n calibration 540 540 485 

Transformation Cube root Square root Fourth root 

LV
A
 9 12 8 

R
2
 calibration 0.97 0.97 0.81 

RMSEC
B
 0.14 0.08 0.08 

RMSECV
C
 0.19 0.13 0.10 

    

n validation 264 264 237 

R
2
 validation 0.96 0.94 0.66 

RMSEP
D
 0.18 0.15 0.15 

Prediction Bias -0.01 0.002 0.07 
A
Number of latent variables. 

B
Root mean square error of calibration. 

C
Root mean square error of cross-

validation. 
D
Root mean square error of prediction. 

  



© 2010 19th World Congress of Soil Science, Soil Solutions for a Changing World 

1 – 6 August 2010, Brisbane, Australia.  Published on DVD. 
8 

(a) 

 

(b) 

 

(c) 

 
Figure 3. Relationships between the MIRS-PLSR predicted and the measured values for the calibration and 

validation (bold text) data subsets of (a) total C, (b) total N and (c) MBC 

 

The present study illustrates that MIRS-PLSR predictive calibrations for total C and total N, at least, can be 

accurate across a wide range of soils. In the context of the magnitude of changes in these soil properties 

resulting from land-use and land-use change, the methodology provides rapid / cheap analysis and therefore 

allows for a greater application of resources to field sampling intensity or sample numbers, relative to 

laboratory analysis. The use of MIRS for predicting MBC requires further investigation, and may require 

development of local and temporal calibrations for this dynamic soil property. 
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Abstract 
This paper outlines the laboratory experimentation and development of a multi-ion measuring system 

(MIMS) for proximal sensing of soil nitrate, potassium and sodium using Ion Selective Electrodes (ISEs). 

We present work conducted for characterising ion exchange reactions using multiple ISEs and a universal 

extracting solution. The use of ion exchange kinetics and prediction models for rapid estimation of soil 

extractable nutrient concentration was evaluated. Using these techniques the prototype laboratory and field 

portable MIMS was developed to provide rapid in-field soil nutrient analysis in less than 30 seconds. The 

system automates the measurement process including ISE calibration, temperature compensation, and soil 

analysis with nutrient estimation. Finally we describe the hardware and the performance of the MIMS under 

laboratory and field conditions. 
 

Key Words 
Proximal soil sensing, Ion Selective Electrodes (ISE), ion exchange kinetics, precision agriculture. 
 

Introduction 
The implementation of Precision Agriculture (PA) is important for optimising crop production and economic 

return to farmers, and reducing the environmental impact of farming operations. More precise and accurate 

resource application (e.g. fertiliser, lime, etc) both spatially and temporally may reduce their over or under 

application, thereby ensuring optimum productivity for any given unit of land. This management philosophy 

requires the collection of high resolution soil chemical and physical information, which can not be met by 

conventional sampling and laboratory analysis. The reason is the large labor requirements, the expense and 

time needed, making conventional methods inefficient (Viscarra Rossel & Walter 2004). For this reason the 

development of Proximal Soil Sensors (PSS) is important. These sensors should be rapid, inexpensive, robust 

and capable of repeatable measurements. A number of proximal soil sensors have been developed and are 

commercially available. For example electromagnetic induction (EMI) instruments (Sudduth et al. 2001), 

electrical conductivity systems (e.g. Lund et al. 1999) and a pH sensor (Adamchuk et al. 1999). Currently, 

there are no commercially available proximal soil sensors that measure soil nutrient concentration directly.  
 

Our sensor is novel in that it aims to bridge the gap between conventional sampling and analysis and current 

proximal soil sensors by providing direct chemical measurements of soil nutrients at intermediate 

resolutions. We developed the system with the view that it should be versatile enough to be used as: 

1) A field portable sensor for site specific nutrient analysis, soil core analysis, or screening of critical 

nutrient concentrations. 

2) The analytical unit for an automated on-the-go sampling system for high resolution mapping of 

soil nitrate, sodium and potassium 

The first will provide rapid, low cost analysis of nutrient concentrations through the soil profile, for example, 

allowing a larger number of soil cores to be analyzed in the field and minimising the need for returning 

samples to the laboratory. The second will provide information on the spatial variability of soil nutrient 

concentrations within approximately the top 20 cm of the soil profile. 
 

Ion Selective Electrodes for soil nutrient sensing 
Ion Selective Electrodes (ISEs) are capable of providing direct measurements in unfiltered soil extract or 

slurries, making them attractive options for proximal soil sensing. They are small, economical and require 

little supporting hardware. Proximal sensing of soil pH using ISEs has been demonstrated by (Adamchuk et 

al. 1999) and commercially available (Veris pH manager – Veris Technologies). Initial techniques 

employing ISE technology such as Direct Soil Sampling (DSM) for measurement of K
+
, Na

+
 and NO3

- 
on 

naturally moist soil samples (Adamchuk et al. 2005) have experienced limited success. These studies 

demonstrate the applicability of ISEs for proximal soil nutrient sensing, however the rather rudimentary 

techniques used to make the measurements and the consequent inconsistencies in the measurements are their 

major drawback and accountable for their limited success. 

Previous work has also inherently been limited to soluble or plant available ion concentrations. Information 
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on both soluble and exchangeable components is important in management decisions due to the buffering 

nature of the soil, for example in the measurement of lime requirement (LR) and fertilizer application. 

However, this requires a lengthy soil extract procedure which creates the rate limiting component of the 

measurement process.  
 

Ion Exchange Kinetics – Observation and steady state prediction 
To overcome the rate limiting ion exchange processes it is proposed that the observation of the ion exchange 

kinetics on addition of soil to the extracting solution will yield sufficient information to predict the steady 

state or equilibrium concentration. Conceptually, this work continues from that of Viscarra Rossel and 

McBratney (2003) and Viscarra Rossel et al. (2005) where the monitoring of the kinetics of pH reactions in a 

batch system was used to estimate LR in a prototype on-the-go proximal sensor. 
 

A series of half-cell ISEs selective for nitrate, sodium and potassium using a shared lithium acetate double 

junction reference electrode were used in a batch processing system for the real-time monitoring of initial ion 

exchange kinetics. To improve extraction rates and sensor performance an extracting solution of 0.1M 

Magnesium Sulphate was chosen. Choices were limited by ISE interferences and selectivity. 
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Figure 1.  Nitrate, sodium and potassium ion exchange kinetics for 25 seconds after soil addition (selected 

samples for clarity). 
 

Due to ISE calibration requirements, the ion exchange kinetics (Figure 1) and equilibrium concentrations 

were obtained using two subsamples and separate batch processes. It was found that the kinetics could be 

successfully modeled empirically and the extracted nutrient concentration (40 minute extraction) could be 

adequately predicted using the initial 15 seconds of the exchange reaction. There were no significant 

improvements by extending the initial measurement to 30 seconds (Table 1). 

 
Table 1. Soil nutrient estimation R

2
 and Mean Relative Error (%) – 15s and 30s analysis times extrapolating the 

exchange equilibrium following a 40 minute extraction (n=30). 
Soil nutrient Concentration 

Range (mg/kg) 

Prediction R
2
 

(15s) 

Prediction 

MRE(%) (15s) 

Prediction R
2
 

(30s) 

Prediction 

MRE(%) (30s) 

Nitrate 8.86-80.18 0.85 37.1 0.92 21.5 

Sodium 1.62-121.99 0.98 17.4 0.99 16 

Potassium 7.41-316.80 0.99 8.7 0.99 9.0 

 

Multi-Ion Measurement System (MIMS)  
A Multi-Ion Measurement System was developed to implement the ion exchange equilibrium technique in a 

field portable device. The system is capable of analyzing a nominal 5g sieved sample (< 2 mm). The MIMS 

is a mechatronic system that contains all necessary hardware, electronics and software to provide fully 
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autonomous sample analysis including reagent injection, agitation, kinetics monitoring and soil nutrient 

predictions (Figure 2 and Figure 3). ISE calibration is also performed automatically and includes ‘quality’ 

control of the ISEs. 
 

 
Figure 2.  The Multi-Ion Measurement System (MIMS) 
 

 
 
Figure 3.  MIMS system overview 
 

We are currently field testing the MIMS (Figure 4) with an integrated GPS for automatic referencing of 

sample locations.  The hardware for the automation of soil collection, sieving and volumetric sampling for 

integration of the MIMS into an on-the-go nutrient sensor is currently being developed. The improved 

system is based on the mechanical sampling mechanism developed by Viscarra Rossel et al. (2005). 

 

 
Figure 4. Field operation of the MIMS 
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Conclusion 
The MIMS system was developed to automate the analytical components of soil nutrient testing with the 

goal of providing: (i) a field portable system for simple and rapid estimation of soil nutrient concentrations 

through the soil profile and (ii) to characterize the spatial variability of nutrient concentrations in surface soil. 

In both these roles this sensor will provide an improved understanding of soil nutrient variability both 

spatially and temporally. It will provide sensing capabilities for more effective continuous and site specific 

nutrient management.  
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Abstract 
The application of near- and mid-infrared (NIR and MIR) spectroscopy as a rapid screening tool for TPH 

concentrations in contaminated soils is presented.  MIR-DRIFT (diffuse reflectance infrared Fourier-

transform) spectroscopy, in particular, promises to be a revolutionary new technique for the in-situ analysis 

of soils at contaminated sites.  Infrared is sensitive to alkyl vibrational frequencies, allowing the use of 

partial least squares (PLS) to be used for quantification of TPH.  This work showed that neat whole soils 

could be used, spectra can be acquired rapidly, and MIR TPH spectra could be separated from those of 

natural soil organic matter.  PLS regression analyses were carried out in three stages; spiking diesel and 

crude oil (as TPH) into reference minerals, spiking into reference soils, and actual TPH concentrations in 

contaminated soils.  Results of PLS cross-validation for the spiked minerals showed that prediction errors 

(RMSECV) with the MIR DRIFT were approximately 2000-4000 mg/kg for a TPH range of 0-100,000 

mg/kg, but slightly higher for the NIR. (4500-8000 mg/kg).  RMSECV values for the reference soils were 

approximately 1500-2500 mg/kg for a 0-25,000 mg/kg TPH range.  Tests with actual contaminated soils 

identified specific peaks in the MIR that were characteristic of TPH, and showed that predictions using these 

peaks resulted in RMSECV of approximately 4,500 mg/kg for a 0-60,000 mg/kg TPH range and thus 

suitable for use as a screening tool.  

 

Key Words 
TPH, PLS, infrared, soils, DRIFT. 

 

Introduction 
Currently, most soil analyses for TPH use a gas-chromatographic (GC) based laboratory method for 

determining TPH concentration.  Although this method is the industry standard, as required by state 

regulatory agencies, it is time-consuming, requires a NATA accredited laboratory, and is not suited to field-

portable or on-site applications.  A more simple and rapid alternative method for screening contaminated 

sites for TPH would be desirable, even if slightly less accurate, for initial TPH screening of samples at 

contaminated sites.  

 

Infrared (IR) techniques may satisfy these requirements, particularly with the availability of portable 

spectrometers.  A literature search resulted in very few studies on the use of IR for TPH determination in 

soils, and in particular using unprocessed neat whole soils (Malley et al. 1999).  Currently, a quantitative 

assessment of TPH can be carried out with an ATR (attenuated total reflection) infrared technique following 

solvent extraction of TPH from the soil sample.  However, the extraction method is somewhat tedious to 

carry out in the field and, due to the extraction step, is not rapid nor lends itself to in-field application as a 

direct measurement method.  This work outlines the scientific basis, methodologies and the results for the 

prediction of TPH concentrations in contaminated soils using Fourier transform infrared (FTIR) spectroscopy 

and partial least squares (PLS) regression on neat whole soils.  The results demonstrate the potential of mid-

infrared DRIFT spectroscopy for TPH using laboratory based and field portable spectrometers. 

 

Near-infrared (NIR) and mid-infrared (MIR) spectra are sensitive to alkyl functional chemical groups in 

organic materials, including TPH compounds.  These techniques therefore have the possibility of screening 

contaminated soils to determine TPH contamination.  An advantage of IR methods is that un-processed neat, 

whole soil samples can be studied by diffuse reflectance infrared (DRIFT) spectroscopy, where the samples 

are simply put under an incoming infrared beam and the reflected signal analysed.  However, there are 

inherent problems with the application of the DRIFT technique to whole soil analysis of TPH.  The first 

problem is the overlap of TPH-sensitive infrared peaks with those of naturally occurring soil organic matter 

(SOM), so that identification of spectral peaks unique to TPH is difficult.  Adding to this problem is masking 

of many of the TPH peaks in the MIR in spectral regions dominated by quartz and other soil mineral spectra.  
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A second known problem with infrared reflectance is the shielding to IR radiation to the internal structure of 

soil micro-aggregates.  This study attempts to address some of these problems and develop a rapid in-situ 

screening technique for TPH contamination of soils. 

 

The project was carried out in three stages.  The first stage dealt with the sorption of diesel and crude oil 

(representing TPH) into some common soil clay minerals (illite, smectite, kaolinite), sand, mixtures of clay 

and sand, and a range of quartz particle sizes.  The second and third stages focused on TPH sorption into two 

standard reference soils, and on a wider range of field soils from actual TPH contaminated sites.  Various 

spectrometer options, including dispersive and FTIR instrumentation, were available for alternative NIR and 

MIR spectral ranges and sample presentations.  It was thus hoped to demonstrate that infrared spectroscopy 

could be used to speed up routine TPH analysis, allowing for more timely management decisions to be made 

with regard to site contamination and remediation, with a potential for future in-field or on-site application.   

 

Methods 
Samples 

Crude oil and diesel at various concentrations were spiked into reference soil minerals and soils and analysed 

using FTIR and NIR reflectance with PLS regression.  Minerals used were sand, bentonite, kaolinite, illite 

and limestone.  Stock solutions of TPH were prepared from crude oil and diesel dissolved in cyclohexane.  

The aliquots were mixed with fixed weights of each sample in a tumbler to ensure an even dispersion of TPH 

throughout the sample particles and then the samples were dried to remove the cyclohexane.  Loss of TPH 

resulted in only 2% in 24 hrs.  Two sets of “real” contaminated soils were tested; set “S” consisting of 34 

soils and set “L” consisting of 138 samples.  Most of the TPH as analysed by the primary laboratory method 

was found in the C15-C28 carbon length fraction. 

 

Spectroscopy 

MIR DRIFT spectra were scanned using approximately 100 mg of soil with a Perkin-Elmer Spectrum-One 

Fourier transform mid-infrared (FTIR) spectrometer (Perkin Elmer Inc., Mass. USA).  Spectra were scanned 

for 60 seconds in the frequency (wavenumber) range 7800 to 450 /cm (wavelength range 1280 to 22000 nm) 

at a resolution of 8 /cm.  Reference scans of liquid crude oil and diesel were also obtained by two reflectance 

methods; as films deposited directly onto a mirror surface (transflectance) and dispersed on the surface of 

powdered KBr (DRIFT).  NIR spectra were scanned using a FOSS NIRSystems 6500 Vis-NIR spectrometer 

(Foss NIRSystems, Silver Springs, MD, USA) with a wavelength range of 400 – 2500 nm.  Samples for NIR 

were placed “as received” into a quartz macro-sampling cuvette with an area of approximately 200x25 mm 

and scanned in reflectance mode.  Reference scans of crude oil and diesel were carried out by transmittance 

using a 1 mm quartz cuvette.  Portable NIR and MIR spectrometers were also tested. 

 

PLS chemometrics 

Spectra were processed with the Unscrambler

 Ver. 9.60 software (CAMO technologies, Inc, 152 

Woodbridge, NJ).  Principal components analysis (PCA) and PLS calibrations were carried out using full 

"leave-one-out" cross-validation (Geladi and Kowalski 1986).  Cross-validation regression statistics were 

expressed in terms of the coefficient of determination (R
2
) and root mean square error of cross-validation 

(RMSECV).  The detection limit was taken as 2.0 x RMSECV.   

 

Results and discussion 
Peaks characteristic of alkyl–CH3 and –CH2 stretching vibrations were observed in the ranges 4500-4200 /cm 

and 3000-2700 /cm.  Of the various alkyl absorbance peaks, one was observed and attributed to the first 

overtone vibration of the –CH3 symmetric deformation mode in TPH but this peak was not observed in the 

spectra of soil organic matter SOM.  These seemed to be related to the amount of diesel in the spiked 

samples rather than to SOM. 

 

As shown by Figure 1 there was a strong influence of sample porosity on IR signal intensity, with porous 

clay minerals resulting in much weaker signals compared to non-porous sand.  This was attributed to 

shielding of the TPH within internal soil structures to the IR beam.  A dramatic signal reduction, by up to a 

factor of 100 could be observed by mixing clay with sand at a proportion of up to 25% clay.  It appears 

therefore that even a minor amount of clay can seriously reduce the apparent intensity of sorbed TPH 

spectral signals.   
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Figure 1 DRIFT spectra of crude oil adsorbed onto soil minerals from a 1% solution of crude in cyclohexane. 

(diff-Cka) kaolinite, (diff-Cil) illite, (diff-CS) sand, (diff-Sm) smectite, (diff-CCO3) carbonate.  Crude oil spectra 

were derived by difference between spiked mineral spectra and raw minerals. 

 

PLS cross-validation results for crude oil spiked into soil minerals are shown in Table 1.  Prediction errors 

(RMSECV) ranged from 700 to 4,200 mg/kg, depending on the range of crude oil in the PLS models.  Errors 

were higher for the NIR portion of the FTIR spectra, although the NIRS6500 gave better results for sand and 

smectite.  
 

Table 1.  PLS cross-validation prediction of TPH in reference minerals.  Standard errors (RMSECV) are shown 

in parentheses. 

Mineral Crude oil FTIR (MIR) FTIR (NIR) NIRS6500 

  (mg/kg) (RMSECV mg/kg) (RMSECV mg/kg) (RMSECV mg/kg) 

Kaolinite 0-10,000 700   

Illite 0-10,000 1900   

Smectite 0-100,000 2400 6300 2600 

Carbonate 0-100,000 4200 4500  

Quartz 0-100,000 3900 8000 3000 

 

Results for the reference standard soils were also considered to be reasonable, with RMSECV values ranging 

from approximately 2,500 ppm in the 0-25,000 ppm range (REF1) to 1,700 ppm in the 0-10,000 ppm range.  

Similar results were obtained for the FT-NIR.  Cross-validation errors were therefore approximately 10% of 

the range of TPH in the calibration sets.   

 

During the course of studies a number of very weak spectral peaks, apparently unique to TPH, were detected 

in the MIR –CH stretching frequency range.  These peaks were attributed to combination and overtone 

vibrational frequencies of terminal methyl (-CH3) chemical groups found in higher proportion in diesel and 

crude oil than in the longer chain length soil organic matter, and thus important for the accurate 

determination of TPH in a wide range of soils in the presence of SOM.  Prediction accuracy appeared to be 

enhanced when these signatures were used, since they could be used to separate the IR signals for short-chain 

terminal –CH3 groups in diesel and crude oil from those of long-chain hydrocarbons in the native SOM.   

 

Results for the field soils were less satisfactory, with cross-validation reasonably accurate for the “S” set but 

worse for the “L” set.  This was attributed to a number of factors, including mismatch between sub-samples 

used for reference laboratory analysis and those analysed by IR and very high sample inter- and intra-

aggregate variability in the “L” set.  Total TPH concentrations were predicted from a subset of the “L” soils 

ranging up to 60,000 ppm (see Figure 2) with an RMSECV=4,653 mg/kg.   
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Figure 2.  FT-MIR PLS calibration for total TPH derived from 35 “L” samples.  

 

Conclusions 
It was concluded from this preliminary study that the MIR DRIFT method could satisfy the required 

accuracy requirements for field screening, provided that certain experimental conditions could be met; the 

same sub-sample must be used for each training/validation IR and laboratory measurement as far as possible, 

the peaks used to build the IR calibration models use the most effective spectral signatures, and minimal 

TPH is lost between receipt of samples and sample scanning,  the predicted TPH values for field screening 

are offset or normalised by a few reference laboratory control data, and surface area, particle size and surface 

effects are taken into account. An encouraging finding of this study was the possibility of being able to 

discriminate between TPH and SOM which current techniques are unable to do.  This study suggests that, 

with recent availability of truly field portable MIR spectrometers, the in-situ measurement of contaminants in 

soils has become more feasible. 
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Abstract 
In this paper, Least-Square Support Vector Machine (LS-SVM) regression is used to for a rapid and accurate 

quantification of total carbon (total-C) and total nitrogen (total-N) in soil samples collected in forest and 

sugarcane areas in Sao Paulo State, Brazil. NIRS spectra were recorded on a NIRS 5000 scanning 

monochromator. The concentration ranges of 0.401-3.101 %, for total-C, and 0.030-0.252 %, for total-N 

were obtained for the references. The performance and robustness of LS-SVM regression are compared to 

Partial Least Square Regression (PLSR). For total-C, correlation coefficients (R
2
cal) of 0.99 and 0.92, 

RMSECV of  0.132 and 0.176 %, and RMSEP of 0.110 and 0.141 % were obtained for LS-SVM and PLSR, 

respectively. For total-N, correlation coefficients (R
2
cal) of 0.98 and 0.92, RMSECV of 0.015 and 0.013 %, 

and RMSEP of  0.008 and 0.009 % were obtained for LS-SVM and PLSR, respectively. At the same time, 

results indicate that LS-SVM-NIRS can be used with advantage as an analytical method for rapid, accurate, 

reliable and cost-effective routine analysis of total carbon and nitrogen in tropical soil. 

 

Key Words 
NIR, chemometrics, sugarcane, tropical soil, carbon, nitrogen. 

 

Introduction 
The Support Vector Machine (SVM) is a relatively new nonlinear technique in the field of chemometrics and 

is employed basically in classification and multivariate calibration problems (Thissen et al. 2003). Recently 

an extension of SVM, called Least Square Support Vector Machines (LS-SVM) was introduced (Codgill and 

Dardenne, 2004). LS-SVM is capable of dealing with linear and nonlinear multivariate calibration and 

resolves multivariate calibration problems in a relatively fast way. In the LS-SVM a linear function (y = w x 

+ b) is fitted between the dependent (y) and independent (x) variables. As in SVM, it is necessary to 

minimize a cost function (L) containing a penalized regression error. The aim of this work was to propose 

the use of least-squares support vector machine (LS-SVM) and NIR spectroscopy with diffuse reflectance as 

a methodology for quantification of total carbon (total-C) and total nitrogen (total-N) in Brazilian soils from 

sugarcane cultivation. Brazil is today the largest sugarcane produce in the world attaining nearly 5 million 

hectares of planted area to produce 643,7 million tones of cane stalks in the 2007/08 season. About 386 

million tones are produced in the State of Sao Paulo alone. 

 

Methods 
Study area and sampling  

A total of 250 soil samples (0-100 cm depth) were collected in a sugarcane plantation located in Pradópolis 

(21
0
 22’ of S. 48

0
 03’ W.) in São Paulo State, Brazil. The soil is a Typic Haplodux, with clayey texture. 

According to the Köppen classification, the climate is an Aw type, tropical wet with a dry winter, with 

average annual precipitation close to 1,560 mm/year. The average annual air temperature is 22.9 
o
C, and the 

average monthly temperatures are above 18.0 
o
C. Sugarcane had been grown for the factory for at least fifty 

years. Four fields with mechanical pre-harvesting were selected, using the method of chronossequence, 

where sugarcane had been harvested, without replanting or soil disturbance, for 8, 6, 4, and 2 years. Soil 

samples were also collected in an area of native forest, as a reference. The sampling was done in a grid 

system with nine replications in each field, to depths of 0-10, 10-20, 20-30, 40-50, 70-80 and 90-100 cm. 

 

Reference analyses and Spectral measurements 

Samples were air-dried, sieved and grounded to 60 mesh before analysis. Reference analyses for total C and 

total N were performed by dry combustion on a LECO CN 2000 elemental analyzer (furnace at 1200 
0
C in 
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pure oxygen). The principle is to convert all the different forms of carbon into CO2 to be measured 

quantitatively by infrared. In addition, the combustion process converts any nitrogen forms into N2 and NOx 

and an aliquot of the sample gas is purified by catalyst heater (NOx gas are reduced to N2), Lecosorb (to 

remove CO2) and Anhydrone (to remove H2O). Then the N2 can be measured by thermoelectric detector.  

 

NIRS spectra were recorded on a NIRS 5000 scanning monochromator (Foss NIRSystems, MD). Sample 

ware scanned in a spinning micro sample cup and the spectra were recorded at 2-nm intervals in the range of 

1100 - 2498 nm by using WINISI II version 1.05 software (Infrasoft International, Silver Spring, MD) for 

data acquisition. A ceramic standard was used for the background spectra and the spectra was collected as 

log(1/R), where R is reflectance. For NIR calibration, two multivariate regression methods were used: (i) 

NIR-PLS using the PLS program from PLS-Toolbox version 3.5 with Matlab from Eigenvector Research 

Inc. (Wise et al. 2005); and (ii) NIR-LS-SVM using the LS-SVMlab (Matlab/C Toolbox for Least Squares 

Support Vector Machines) (Suykens et al. 2002). All programs were run on an IBM-compatible Intel 

Pentium 4 CPU 3.00 GHz and 1 Gbyte RAM microcomputer. Data were treated using a multiplicative 

scattered correction (MSC) technique before further multivariate analysis. To evaluate the error of each 

calibration model, the root mean square error was used, calculated by eq. 1. 

 

         (1) 

 

Results 
All spectra were pre-processed by multiplicative scatter correction (MSC), aiming at correcting the baseline 

deviation between the spectra. Figure 1 shows the results of the PCA for all soil samples studied. We have 

mapped the data on three most important principal components PC1, PC2 and PC3 presenting the distribution 

on data in three-dimensional plot which explain 99.90% of the original information. Analysing the 

distribution of data mapped on the principal components analysis it is evident that the data points belonging 

to three distinct classes, which represent three different stages of the dynamic soils for C and N throughout 

the time. The first cluster (A) contains soil samples for two years and forest, the second (B) contains soil 

samples for four years, and the third cluster (C) contains soil samples with six and eight years of sugarcane 

cultivation (Chronosequence). 

 

 
 
Figure 1.  The three-dimensional scores (PC1xPC2xPC3) of PCA plots using spectra soil sugarcane data. 

 

In Figure 2 the optimized surfaces result for the LS-SVM model, using the calibration set is shown. The γγγγ  

and σ
2
 parameters were a manageable task, similar to the process employed to select the number of factors 

for PLS models, but in this case in two-dimensional problem. The cross-validation procedure has been used 

for to the determination of the RMSECV. 
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(a) (b)(a) (b)

 
Figure 2.  Parameter optimization response surfaces using LS-SVM for total-C (left) and total-N (right) in soil 

samples. 

 

We compare the coefficient of correlation (R
2
cal) for the calibration model, and RMSECV and RMSEP for 

the different γ and σ
2
 parameter combinations. If both parameters are increased the RMSECV and RMSEP 

values decrease (Figure 2). For total-C quantification model, σ
2
 = 1400 was used and increased values of γ, 

the RMSE values were optimized even for γ = 1600, and for values above of 1600 the RMSECV and 

RMSEP values did not vary. When γ = 1600 was used and σ
2
 decreased the RMSECV and RMSEP values 

increased. It was possible to observe that when the γ values increased towards infinity, the RMSECV value 

tends to a minimum. However, this would likely lead to an over-fitted calibration. For total-N when γ = 1500 

was used and it increased σ
2
 the RMSE values were optimized even for σ

2
 = 2200, and for values above 2200 

the RMSECV value did not vary and RMSEP increased with the risk of over-fit. When σ
2
=2200 was used 

and γ was decreased the RMSECV and RMSEP values increased. 

 

Table 1 presents the results for LS-SVM models for total-C determination using γ =1600 and σ
2
=1400 and 

for total-N using γ =1500 and σ
2
= 2200. When the results for PLS and for LS-SVM models were compared, 

both presented  good correlation coefficients (R
2
cal), but when procedures were compared RMSEP values 

for total-C and total-N quantification LS-SVM was better. 

  
Table 1.  Performance comparison results between PLS and LS-SVM for total-C and total-N quantification. 

total-C total-N 
 

PLS LS-SVM PLS LS-SVM 

R
2
cal 0.920 0.995 0.918 0.985 

RMSECV (%) 0.1762 0.1318 0.0133 0.0151 

RMSEP (%) 0.1410 0.1101 0.00948 0.00837 

LV 9 - 12 - 

γγγγ  - 1600 - 1500 

σ
2 - 1400 - 2200 

 

The graphs between reference and NIR predicted total-C values are presented in Figure 3 for the 166 

calibration and 78 prediction spectra samples. The correlation coefficients (R
2
cal) between PLS and LS-

SVM models for total-C content were found to be the best. However it is possible the PLS model presents 

greater error for the samples with high and minors values of total-C, which indicates that the LS-SVM 

calibration model could be used for extreme values. 
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Figure 3.  Calibration and prediction plot of % total-C by NIR-PLS model using 9 latent variables (a) or LS-

SVM model (b). 

 

For total-N 167 calibration and 75 prediction spectra samples were used. The correlation coefficients of 

calibration models (R2cal) between PLS and LS-SVM models were found to be the best.  It is possible see 

that the LS-SVM presents excellent prediction abilities when compared with PLS regression. 

 

Conclusion 
The use of the LS-SVM for to quantify total-C and total–N in soil samples under sugarcane cultivation 

results in robustness calibration method with respect to a heterogeneous set soil samples. PCA analyses 

indicated that there are three distinct groups in the set of samples according to land use and time of 

cultivation of sugarcane. Furthermore, we demonstrate the capacity for generalization and flexible 

application of the LS-SVM procedure when combining different data sets. Finally, LS-SVM are promising 

techniques to use for estimation of soil quality from indirect but fast and reliable measurements such as near 

infrared spectra. 
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Abstract 
We present results of the EU- funded project iSOIL (Interactions between soil related sciences- Linking 

geophysics, soil science and digital soil mapping). One focus of iSOIL is the acquisition and combination of 

different geophysical data for proximal soil sensing and the evaluation of single geophysical methods 

according to their reliability. The data acquisition follows a concept, which combines different scales from 

plot scale to point sampling. This strategy is enabled by the application of mobile geophysical platforms, 

which allow fast and flexible measurements. Furthermore it is possible to mount different instruments on 

platforms and combine them.  

A prerequisite for the common interpretation of different methods is the reproducibility of data of a single 

method. We present results concerning reproducibility of Electromagnetic induction (EMI) – data. EMI data 

depend on many factors which are also caused by the instrument itself. We investigated following aspects:  

1) Comparison of two identical EM38DD-instruments 

2) Comparison of the calibration of different persons 

3) Variation of calibration height 

In our presentation we show which facts have to be regarded during calibration procedure.  

 

Key words 
Measuring design, hierarchical approach, combination of methods, electromagnetic induction, reliability of 

data.  

 

Introduction 
The focus of the project iSOIL “Interactions between soil related sciences – Linking geophysics, soil science 

and digital soil mapping” is to develop new and to improve existing strategies and innovative methods for 

generating accurate, high-resolution soil property maps. At the same time the developments will reduce costs 

compared to traditional soil mapping. The project tackles this challenge by integrating the following three 

major components:  

• high resolution, non-destructive geophysical (e.g. electromagnetic induction - EMI; ground 

penetrating radar, magnetics, seismics) and spectroscopic methods,  

• spatial inter- and extrapolations (e.g. geostatistics, machine learning) concepts (McBratney et al. 

2003), and  

• soil sampling and validation schemes to provide representative and transferable results (Brus, et al. 

2006; de Gruiter, et al. 2009; Behrens et al. 2006).  

Thus, within iSOIL we will develop, validate, and evaluate concepts and strategies for transferring measured 

physical parameter distributions into soil property, soil function and soil threat maps of different scales, 

which are relevant to and demanded by the “Thematic Strategy for Soil Protection” (European Commission 

2006). The final aim of the iSOIL project is to provide techniques and recommendations for high resolution, 

economically feasible, and target- oriented soil mapping under conditions which are realistic for end-user. 

The resulting soil property maps can be used for precision agriculture applications and soil degradation 

threats studies, e.g. erosion, compaction and soil organic matter decline. 

 

Acquisition of data 
The application of mobile geophysical platforms is a fast and cost efficient way to detect physical parameters 

of soils at large areas (Figure 1). Another advantage is the flexibility of these platforms since different kind 

of instruments can be mounted and combined. Hitherto following commercially available instruments are 

used on platforms within iSOIL project: EMI, GPR, γ-spectrometry and magnetics.   
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Figure 1. Mobile geophysical platform: EM31 (1

st
 sledge) and EM38DD (2

nd
 sledge) are towed by a tractor. 

 

Since geophysical methods provide only physical parameters it is essential to combine them with 

conventional soil sampling methods for ground truthing. Via transfer functions physical parameters have to 

be converted into soil parameters. We need to develop measuring designs for the evaluation and combination 

of different geophysical methods. The application of a hierarchical approach is one way to combine different 

scales and parameters. The implementation of this approach works in iSOIL in the following way (Figure. 

2): the first step is a survey of the total area with EMI and γ-spectrometry.  The distance between two lines is 

10 – 20 meters. By means of the geophysical data and a digital elevation model, 25 representative soil 

sampling points are chosen, via a weighted conditioned latin hypercube sampling scheme (wLHS) based on 

conditioned latin hypercube sampling (cLHS; Minasny and McBratney 2006). 

cLHS is based on a simulated annealing scheme where samples are partly replaced randomly and based on 

the analysis of the cumulative frequency distribution (cdf) until the cdf of all sensors in the sample set is 

representative for the original cdf based on the interpolated sensor maps. In the same manner the correlation 

between the different sensors is preserved in the sample set. Thus, the sample set is fully representative for 

the original sensor data. In addition wLHS allows to integrate the state space of different sensor data 

separately according to a given weight.  

 

 
Figure 2. Implementation of a hierarchical approach: 1. survey with EM38DD (coloured lines), 2. sampling 

points for soil parameters calculated by cLHS (numbers), 3. fields of intensive geophysical measurements 

(rectangles) 

 

All 25 soil sampling points are probed consistently by a – in iSOIL developed – sampling protocol with 
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conventional soil sampling methods with regard to texture, organic matter content, etc. Out of these sampling 

points five points are chosen for further detailed measurements. Around a single point a small area of 30 x 70 

meters is placed to accomplish geophysical high resolution measurements. Besides EMI and γ-spectrometry 

also magnetics, seismics and GPR are applied. The line distance is only one meter and also the towing-

velocity is slow.  

The combination and common interpretation of different methods require several prerequisites to a single 

method. The measurements need to be comparable within several fields and over time. As a representative 

we show in the following results of a comparability study with the EMI instrument EM38DD.  

 

Reproducibility of electromagnetic induction measurements in the near surface area 
EM38DD is a widely-spread instrument for near surface applications to detect electrical conductivity of the 

subsurface. Among others it is used in the field of precision agriculture. The measured signal depends on 

many internal (caused by the instrument) and external criteria, hence measured data can be used only for 

qualitative interpretation.  

In particular for monitoring aspects the data need to be reproducible in a quantitative manner additionally. 

External criteria are weather conditions as well as water content of soils and cannot be influenced. The 

second group of criteria implies calibration of the instrument and changes in electronics of the instrument 

over time.  

A field campaign focused on internal factors and the results show serious differences in single 

measurements. At all we measured 30 test series on two lines regarding following factors: 

1) Comparison of two identical EM38DD-instruments 

2) Comparison of the calibration of different persons 

3) Variation of calibration height 

The influence of the factors needs to be regarded for horizontal and vertical dipole separately.  

1) The comparison of both instruments shows a good reproducibility of absolute values of instrument A. The 

vertical dipole measures in nearly all cases the same conductivity. On the contrary vertical dipole of 

instrument B shows significant higher variances and a deviance in absolute values related to instrument A. 

This is caused by the last absolute calibration, which is longer ago for instrument B than for instrument A. 

The absolute calibration can be done only by the producer, but a periodic recalibration is not suggested 

(Figure 3a)). 

 

 
Figure 3.  a) comparison of two instruments: Measurements with instrument A are reproducible, absolute values 

of Instrument B are lower and disperse more than Instrument A (vertical dipole). 3 b) comparison of different 

person: a single person calibrates the instrument in the same way, but there are differences between the persons 

(horizontal dipole). 

 

2) At instrument A occur at the horizontal dipole strong dependencies, which originate by the calibration of 

different persons. A single person calibrates repeatable, but there deviances in different persons. The 

horizontal dipole of instrument B could not reproduce any data even within a single person (Figure 3 b)).  

3) According to producer information the instrument should be calibrated in a height of 1.5 meters. Instead 

many users calibrate the instrument in shoulder height, which is seldom measured. Hence the stated height is 

not held. These measurements show that the vertical dipole is very stable against variations of height. Even 

at measurements below 1.5m the vertical dipole measures comparable data in comparison to the right height. 

In contrast the horizontal dipole is very sensitive to any changes in calibration height. Even small under-

usage led to deviances, which are not classifiable.  
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If these factors accumulate, it is nearly impossible to measure reproducible data. For that reason we need to 

develop methods, how to evaluate the single factors and how to unify the calibration procedure. 

 

Conclusion 
Within EU-funded project iSOIL we combine different mobile geophysical method for fast and efficient soil 

mapping. The major prerequisite for combining is the reliability and reproducibility of data of each single 

methode. As an example we show results of electromagnetic induction measurements. The focus of this 

poster is to compare three different man made factors that influence electromagnetic induction 

measurements: the instruments itself, the influence of the person who calibrates and the calibration height.    

The results show strong deviances between different instruments of the same type (EM38DD). Furthermore 

the measured values depend on the person who is calibrating the instrument. And at least the variation of 

height of calibration leads to non-classifiable variations in measured values.  

Due to these factors it is necessary difficult to measure quantitative values for monitoring aspects, but errors 

can be minimized by reducing changes in calibration height, using always the same instrument and only one 

person should calibrate within one field campaign. 

 

In addition to this contribution please see the poster presentation „iSOIL and Standardization“ for details on 

one activity of the iSOIL project: the CEN Workshop to establish a widely accepted voluntary standard for a 

best practice of EMI- measurements. 
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Abstract 
An EMI survey provides data on the apparent soil electrical conductivity of the soil profile and this is often 

locally correlated with soil properties such as texture and pH. Occurrence of salinity, gravels and rocks in the 

landscape interferes with interpretation of the data. Complementary measurements are often used to infer soil 

properties. We surveyed a 200 ha cropping field in Western Australia with EMI and complementary gamma-

ray spectrometer to delineate management zones. We applied a multivariate approach called multi collocated 

factor cokriging using seven variables measured during the survey: natural gamma-emission from potassium, 

thorium, uranium, total emission, measurements from two EMI sensors (EM38, EM31) and GPS height. A 

salty stream along the north-west boundary of the field influenced the spatial pattern of variation. The first 

anisotropic factor along the direction of the stream had a range of 900m and was mostly influenced by k 

emission. On the contrary, the first factor at shorter range on the orthogonal direction to the flow of the creek 

was dominated by topography. Factor cokriging resulted in partitioning of the field into three areas using the 

interquantile values as breakdown points after filtering outliers. The resulting spatial classification did not 

show clear spatial long-range structures. 
 

Key Words 
Management zones, electromagnetic induction, gamma emission, geostatistics, factor cokriging, GPS. 
 

Introduction 
Variation in soil properties across a field interacts with seasonal conditions and management to give rise to 

large variations in crop yields, deep drainage and nitrate leaching in rain-fed Mediterranean-type 

environment (Wong et al. 2006; Wong and Asseng 2006). This results in corresponding variation in fertiliser 

requirement. Delineation of management zones to represent clustering of soil properties relevant to crop 

productivity allows increased precision in field management. Traditional clustering techniques produce 

natural groupings of soil data in the attribute space without reference to geographical position, which may 

cause several spots of disjoint clusters to occur. We then preferred to use a multivariate geostatistical 

approach, based on Principal Component Analysis and called multi collocated factor cokriging, to enable us 

to estimate some synthetic indices describing the continuous spatial variation in the soils (Castrignanò et al. 

2000). 

 

An EMI survey provides data on the apparent soil electrical conductivity of the soil profile and this is often 

locally correlated with soil properties such as texture, plant available soil water storage capacity and pH. 

EMI-based methods cannot distinguish between sandy soils and gravels which have similar and low apparent 

electrical conductivities (ECa). To overcome these shortcomings, we complemented EMI with gamma-

radiometric survey which shows promise in high resolution soil property mapping (Wong et al. 2009). The 

spectrometer measures natural γ-emissions from the top 30-45 cm of the soil due to emitters such as 
40

K and 

daughter radionuclides of 
238

U and 
232

Th. Ambiguity in the interpretation of radiometric data arises when 

soils with varying gravel and clay contents occur across the surveyed area: increases in clay content or 

proximity of gravels to the soil surface both result in strong signals. This problem is not encountered with 

ECa-based methods since clays and gravels give rise to markedly different ECa-values. 

 

The objective of this work was to apply a multivariate geostatistical approach for delineating management 

zones based on complementary EMI and gamma-radiometric survey to improve management of field 

variation. 

 

Methods 
The 200 ha cropping field is situated 350 km north of Perth, at Buntine in Western Australia. We 

simultaneously measured (1) apparent soil electrical conductivity (ECa) across the field on 30 m line spacing 

with electromagnetic induction equipments (EM31, EM38 GEONICS, Ltd, Ontario-Canada), (2) γ-ray 
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emission using an Exploranium γ-ray spectrometer with a large (8 l) thallium activated sodium iodide crystal 

scintillation detector and (3) differential corrected GPS location. ECa, γ-ray emission and GPS location were 

recorded at 1 second intervals. The γ-ray spectra were resolved into the individual emissions from potassium, 

thorium and uranium according to their characteristic peaks. 
 

Geostatistical analysis 

Even if ordinary cokriging does not require the data to follow a normal distribution, variogram modelling is 

sensitive to strong departures from normality. Therefore, we transformed each initial attribute into a 

Gaussian-shaped variable with zero mean and unit variance (Chilès and Delfiner 1999) 

To produce the maps of the original variables and of synthetic scale-dependent indices of spatial dependence, 

the multivariate spatial data were analysed by multi collocated cokriging and Factor Cokriging Analysis 

(FCKA) (Wackernagel 2003). The latter consists of a scale-dependent decomposition of the set of original 

second-order random stationary variables into a set of reciprocally orthogonal regionalized factors. The 

approach efficiently uses the auxiliary variable only at the target grid node and at all the locations where the 

primary variable is defined (Rivoirard 2001). 
 

Results 
Distributions of ECa, gamma-radiometric values were found to be strongly positively skewed (skewness 

varying between 1.37 and 2.31), whereas height distribution was symmetric (skewness = 0.02) but bimodal. 

An anisotropic LMC was fitted because the field slopes towards a salty creek, which forms its north-west 

boundary, and this creek drives zonal anisotropy along the direction 60 N, characterised by greater continuity 

(longer range and smaller sill) compared with the other directions. The model includes four basic structures: 

1) a nugget effect, 2) an isotropic cubic model with range= 400 m, 3) an anisotropic Bessel K model in 

direction N150 with range = 500 m and parameter=1 and 4) an anisotropic Bessel K model in direction N60 

with range = 900 m and parameter=1. The estimated maps are reported in fig.1 and show more uncertainty 

along the western boundary due to the scarcity of samples in the interpolation neighbourhood. Thorium, 

uranium and total counts look quite similar, whereas the information obtained from the potassium channel 

differs (Wong et al. 2009).  

 

Low EM38 values of <10 mS/m, occurring approximately along the axis 442000 east, coincides 

approximately with a similar area for low emission from K. Areas of high EM38 values >45 mS/m, 

occurring along the western boundary of the field due to the presence of a salty creek, are not matched by 

high gamma-radiometric values. 

 

To synthesise the multivariate variation of the field, the multi collocated factor cokriging analysis was 

applied to the seven Gaussian transformed variables. The sum of the eigenvalues at each spatial scale gives 

an estimation of variance at that scale. The main components of variation (about 44 and 36% of the total 

variance) occur at longer range (900 m) along the creek direction and in the orthogonal direction at shorter 

range (500 m), respectively. On the contrary, the contributions of the isotropic and the spatially uncorrelated 

(nugget effect) component to the total variance are lower (16% and 4%, respectively). 

 

Only the eigenvectors producing eigenvalues greater than one should be retained, because their variation is 

assumed statistically different from residual variation. We focused in particular on the first factor at shorter 

and longer scale, which account for about 59% and 72% of the variation at the corresponding spatial scales, 

respectively. The loading values for the two factors indicate elevation and the radionuclides as the most 

inversely influencing the first factor at shorter range along the direction N150, whereas K and total gamma–

ray emissions, and elevation and EM38 data at a less extension, weigh positively on the long range factor 

along the direction of the creek. All the variables, with the exception of elevation and k emissions, affect the 

isotropic variation at short range, but EMI data do that positively whereas gamma emissions negatively. 

Summarising we could say that there are three main factors controlling the spatial variation of this field: 

salinity, acting along the direction of the creek flow, topography along the orthogonal direction to the flow 

and texture acting isotropically.  
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Figure 1.  Spatial estimates of emission from potassium (K), thorium (Th), uranium (U), total emission (Total), 

apparent electrical conductivity measured by EM38 (EM38) and by EM31 (EM31) and GPS height (height). 

 

Figure 2 shows the maps of the scores of the first factor for the two main components of variation at range 

500 and 900 m. The scores were split into three zones by using interquantile values as breakdown points 

after filtering outliers. The map at shorter range shows a sequence of alternating strips parallel to the 

direction of the creek flow and a wide homogeneous area on the eastern side, corresponding approximately 

to the high values of k emission and EM38. The map at longer range does not reveal clear structures of 

spatial dependence but looks more variable and characterised by many stripes. 

These results show that delineating “homogeneous” zones of such size to be differentially managed by the 

farmer might not be an efficient way to implement precision agricultural in this field, whereas a very fine 

VRT application of agronomic inputs would be preferred. 
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Figure 2.  Short range (500 m) and long range (900 m) spatial estimates of the regionalized factors  
 

Conclusions 
In this study EMI and complementary gamma-radiometric data were used to delineate agricultural 

management zones by adopting a multivariate geostatistical approach. The resulting partitioning has not 

shown large areas to be differentially managed, probably owing to the interference of different soil 

processes. 
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Abstract 
The application uniformity of sprinkler irrigation systems affects both crop growth and profitability.  

However, traditional catch can measurements of irrigation uniformity are labour intensive and are normally 

only conducted in a small area of the field.  A trial was established in a lettuce crop irrigated with a solid set 

sprinkler system to evaluate the potential to use electromagnetic sensing for irrigation performance 

assessment.  After crop establishment, the uniformity of the irrigation applications was deliberately modified 

within two sprinkler plots (9 m x 11 m) by reducing the sprinkler operating pressures.  The uniformity of the 

water applied during each irrigation was measured using a grid of catch cans.  The apparent soil electrical 

conductivity (ECa) was measured within the plots for each irrigation during the cropping season using an 

EM38.  Electromagnetic (EM) measurements were taken with the EM38 either on the ground or 35 cm 

above the ground surface.  Elevating the EM sensor above the ground level did not improve the correlation 

between the point measured catch can volume of water applied and the difference in ECa measured before 

and after irrigation (∆ECa).  However, the coefficient of uniformity calculated using the ∆ECa data was 

correlated to the coefficient of uniformity calculated from the catch can data.  The correlation was improved 

where the EM sensor was elevated above the soil surface so that only the root zone was sensed.  This 

suggests that measurements of ∆ECa can be used to estimate the irrigation uniformity for shallow rooted 

crops, particularly when the uniformity is low (CU < 70%) and the irrigation application pattern is consistent 

throughout the season.  ∆ECa measurements also identified the location of irrigation system leakages within 

the field.  

 

Key Words 
Apparent electrical conductivity, irrigation performance, leakage. 

 

Introduction 
The uniformity of water application is a key performance measure of an irrigation system.  As the uniformity 

of water application decreases there is an increasing range of volumes applied within the irrigated area (Li 

and Rao 2003) which may adversely affect crop growth and profitability (Barber and Raine 2002; Elms et al. 

2001).  Catch can measurements are commonly used to evaluate the spatial variability of water application.  

However, discrete physical sampling can be labour intensive restricting the number of samples collected and 

the ability to identify all spatial variability in the field (Plant 2001).  Electromagnetic (EM) sensors have 

been used to measure apparent (or bulk) soil electrical conductivity (ECa) and identify spatial variations in 

soil moisture (Heiniger et al. 2003; Taylor et al. 2003).  However, there are few reported studies using EM 

sensing for evaluating irrigation uniformity, particularly where small volumes of water are applied using 

sprinkler irrigation systems.   

 

Hussain and Raine (2008) reported on a preliminary study using an EM sensor to evaluate the uniformity of 

application for a sprinkler irrigated lettuce crop.  ECa was found to be correlated with the seasonal pattern in 

water application where the uniformity of water application was low and the spatial pattern of application 

was consistent throughout the season.  The ECa was not well correlated with the uniformity of individual 

application events or where the irrigation uniformity was comparatively high.  However, the EM sensor in 

the preliminary study was placed on the soil surface resulting in the soil measurement depth being much 

greater than the rooting depth of the crop, possibly reducing the ability of the instrument to resolve the small 

volumes of water applied.  Similarly, there was some uncertainty over the ability to correlate a point 

measured catch can volume with an EM measurement averaged over a larger spatial area.  Hence, this paper 

reports on a subsequent field study to evaluate whether (a) elevating the EM sensor above the soil surface 

improves the ability to identify spatial variations in small water applications and (b) correlations exist 
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between the catch can and EM measured uniformity indices calculated for the whole plot.  It also presents 

field scale EM data demonstrating the potential to identify irrigation system leaks. 

 

Methodology 
This trial used a similar agronomic methodology to that reported by Hussain and Raine (2008) for an autumn 

sprinkler irrigation trial of lettuce conducted on a Black Vertosol (Isbell 2002) at the Queensland Primary 

Industries and Fisheries Research Station, Gatton.  This subsequent winter trial (August to October 2007) 

was also conducted on a 92 × 11 m plot cultivated into seven 1.3 m wide beds separated by 0.3 m furrows.  

The site was irrigated using a solid set sprinkler irrigation system consisting of ISS Rainsprays fitted with 

1.98 mm nozzles on 0.6 m risers and operating at 335-370 kPa.  The sprinklers were arranged in a square 

pattern with 9 m spacings along the laterals and an 11 m lateral spacing.  Four week old Iceberg (cv. Raider) 

lettuce was transplanted on the 8/8/07.  Three in-crop irrigations were applied to establish the transplants and 

then three (Control, Poor-1 and Poor-2) treatment grids (9 ×11 m size) were established.  The pressure at 

three sprinklers in the Poor-1 and the Poor-2 grids were reduced to 138 or 172 kPa using pressure reducers.  

The pressure of one of the 172 kPa sprinklers was reduced to 103 kPa after the fourth irrigation (18/8/07) in 

both Poor grids and to further reduce the uniformity worn sprinkler heads and nozzles were installed after the 

fifth irrigation (1/9/07).  The sprinkler pressure and heads in the Control grid were not changed at any time. 

Irrigations were conducted in the evenings and the catch can data collected the following morning.  The 

Christiansen (1942) Coefficient of Uniformity (CU) was used to evaluate the uniformity of the water 

application in each plot.  The ECa measurements were taken using an EM38 (Geonics Ltd. Mississauga, 

Ontario) at ground level in horizontal mode for the 4
th
, 5

th
 and 6

th
 irrigations.  The EM meter was then 

mounted on a wooden stand 35 cm above the beds for measurements of the 7
th
 and 10

th
 irrigations. 

 

Results and Discussion 

Irrigation application and ∆ECa  

The average volume of water application varied from 6.1 to 24.8 mm whilst the difference in apparent soil 

electrical conductivity before and after irrigation (∆ECa) varied from 1.0 to 19.0 mS/m during the season 

(data not shown).  The example contour map of water application (Figure 1) shows that high water 

application and ∆ECa values were generally observed close to the sprinklers with low values in the middle of 

the grid. 

 

(a)             (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Pattern of (a) water application (mm) and (b) ∆ECa (mS/m) for the Poor-2 grid (10
th

 irrigation).  

 

The linear correlation between the point measured volume of irrigation water applied and the ∆ECa was low 

before the fifth irrigation in all the grids (Table 1).  The comparatively high sprinkler uniformity and 

relatively small volumes of water being used by the crop during this period maintained a moist soil profile 

and produced small differences in soil moisture across the plot.  The correlations between water applied and 

∆ECa were higher in later irrigations (i.e. after the reduction in sprinkler uniformity) reflecting the larger 

variation in water volume applied and increased differences in the soil moisture across the poor grids.  

However, there was no correlation between the volume of irrigation water applied and the ∆ECa in the 

Control (i.e. high irrigation uniformity) grid suggesting that EM measurements are not able to adequately 

identify specific spatial patterns of water application where the uniformity of application is high (e.g. CU > 
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70%).  Raising the EM sensor above the ground level (7
th
 and 10

th
 irrigations) did not increase the correlation 

between the catch can and ECa measurements (Table 1). 

 
Table 1.  Selected irrigation performance data and correlation between water application and ∆ECa 

Average volume of  

water applied 

(mm) 

Coefficient of uniformity 

(CU) calculated from catch can 

data (%) 

Linear correlations between 

point measured depth of water 

applied and ∆ECa (R
2
) 

No. of 

irrigation 

after 

transplant 

 
Poor-1 

grid 

Poor-2 

grid 

Control 

grid 

Poor-1 

grid 

Poor-2 

grid 

Control 

grid 

Poor- 1 

grid 

Poor-2 

grid 

Control 

grid 

4
a
 13.9 14.7 19.2 75.4 82.6 84.9 0.00 0.03 0.09 

5
a
 12.1 11.2 16.9 80.0 72.0 84.6 0.31 0.62 0.39 

6
a
 13.4 13.2 19.2 48.1 63.7 82.8 0.51 0.40 0.16 

7
b
 15.4 14.9 23.9 65.1 58.3 88.0 0.27 0.23 0.02 

10
b
 13.6 12.9 21.5 62.0 46.1 87.3 0.21 0.56 0.04 

a = EM on the ground, b = EM elevated above the ground 

 

Relationships between CU calculated by catch can and ∆ECa 

The coefficient of uniformity (CU) calculated using the catch can measurements for each whole plot was 

reasonably well correlated (R
2
 ~ 0.6) with the CU calculated using the ∆ECa measurements for both trials 

(Figure 2a).  However, the correlation was substantially improved (R
2
 = 0.93) when the ECa measurements 

were taken 0.35 m above the ground surface compared to the on-ground measurements (Figure 2b).  This 

suggests that variations in ∆ECa observed when the EM sensor is elevated may better reflect the change in 

root zone soil moisture with small water applications than on-ground EM measurements. 
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Figure 2.  Linear correlations of CU calculated from catch can measurements and ∆ECa (mS/m) for (a) autumn 

and winter trial and (b) on-ground and elevated EM measurements. 

 

Utility of whole field ∆ECa measurements to identify system leaks 

ECa measurements were generally higher after each irrigation (i.e. due to higher soil-water content) and 

when the EM sensor was placed on the ground rather than elevated (i.e. due to a larger sensed soil volume).  

Some variations in ECa were also observed associated with proximity to metallic irrigation infrastructure.  

However, where ∆ECa was mapped for the whole field (e.g. Figure 3) significant differences in ∆ECa were 

found in areas which were not associated with the non-uniformity in sprinkler applications.  For example, 

higher ∆ECa values were observed at several in-field locations (e.g. 0 × 10.14, 78 × 10.14 and 82 × 10.14 m) 

for the 4
th
 irrigation (Figure 3a) and at the top (i.e. 0 m) of the field for the 10

th
 irrigation (Figure 3b).  In 

these cases, the elevated ∆ECa readings reflect leakage from the irrigation pipe system and suggest that ∆ECa 

could be used to identify gross irrigation system problems. 

 

Conclusions 
Correlations between the point measured water applied and the ∆ECa measurements were low, particularly 

early in the season when crop water use was small and the uniformity of the irrigation relatively high.  

Elevating the EM sensor above the ground level did not improve the correlation between the point measured 

catch can volume of water applied and the ∆ECa.  However, the coefficient of uniformity calculated using the 
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∆ECa data was correlated to the coefficient of uniformity calculated from the catch can data.  The correlation 

was improved where the EM sensor was elevated above the soil surface so that only the root zone was 

sensed.  This suggests that measurements of ∆ECa can be used to estimate the irrigation uniformity, 

particularly when the uniformity is low (CU < 70%) and the irrigation application pattern is consistent 

throughout the season.  EM measurements also appear useful for identifying irrigation system leakages 

within the field. 
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Figure 3.  Whole field ∆ECa (a) for the 4
th

 (on-ground) and (b) 10
th

 (elevated) irrigation measurements. 
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Abstract 
Measuring changes in soil carbon is a daunting task, as soil carbon levels can vary significantly at short distances.  

Uncertainty about soil carbon measurements is affecting agriculture’s consideration as an offset provider under a 

regulated greenhouse gas program, such as cap-and-trade.  Purchasers of carbon offsets must be assured that carbon 

changes are real, and not just an artifact of sampling locations. To complicate matters further, measurements must 

include the soil profile, making this a three-dimensional effort. Veris Technologies has developed a system that 

employs a suite of sensors, including near-infrared spectroscopy, to measure carbon throughout the soil profile. The 

system was deployed on a set of nine fields in Kansas USA, with the objective of establishing a baseline soil carbon 

inventory.  Lab-analyzed soil samples were used to calibrate and cross-validate the field sensors, and confidence 

intervals from sensors and lab were compared. 

 

Key Words 
near-infrared, spatial variability, cap-and-trade, spectrometer, soil electrical conductivity 

 

Introduction 
Since 1850, soils have lost an estimated 78 Gt of carbon, primarily due to cultivation (Lal 2009). This loss of 

soil carbon represents a significant portion of greenhouse gas emissions, and has resulted in the degradation 

of agricultural soil quality worldwide. Using practices that restore carbon, such as no-till farming, carbon can 

be sequestered in the soil.  Carbon sequestration has the potential to offset
 
fossil fuel emissions by 0.4 to 1.2 

gigatons of carbon per year,
 
or 5 to 15% of the global fossil-fuel emissions (Lal 2004). 

 

Under a carbon trading system, farmers and landowners would be paid for adopting carbon-sequestration 

techniques, provided their increases in carbon can be measured, monitored and verified.  Accounting for soil 

carbon changes is difficult, because carbon increases due to farming practice changes are very small, and 

carbon varies widely within a field, even within a few meters.  What causes soil carbon spatial variability?  

In addition to the macro factors such as soil formation, soil type, and historical land use, there are many 

micro-scale influences: crop residues are distributed unevenly from combine harvesters, heavy rains remove 

and deposit piles of residue sporadically, animals defecate and die in random locations, and many other 

factors add variations.  

 

In order to verify that carbon has been sequestered, a baseline must be established at the beginning of the 

project, along with subsequent measuring to verify the carbon change.  The amount of carbon that is 

accredited will be based on the confidence, likely at the 90% level, of those measurements (Willey and 

Chameides 2007). The confidence interval is determined by the number of samples and the variability of the 

carbon. If the standard deviation is large, additional samples are required to reduce the confidence interval.  

If the sampling rate is insufficient, the carbon payment discount due to the uncertainty will be large.  If an 

adequate number of samples are collected, the cost of conventional soil sampling and lab-analysis could be 

excessive.  An alternative that generates large numbers of carbon analyses at a very low cost per sample must 

be considered. Near-infrared reflectance (NIR) spectroscopy has been shown to correlate well with soil 

carbon (Sudduth and Hummel 1993; Reeves et al. 1999; Shepherd and Walsh 2002).   NIR spectroscopy and 

other proximal field sensors were tested in a soil carbon project on a set of nine fields in northeast Kansas. 

The objective for this project was to establish baseline soil carbon measurements on land that is currently 

under contract to produce greenhouse gas reduction and offsets.  These measurements were intended to 

provide quality assurance of the initial carbon levels for the greenhouse gas offsets that will be produced on 

these lands, and to generate information about costs of carbon quantification. 

 

Materials and Methods 
A commercially available system from Veris Technologies that maps the surface and the soil profile to a 

depth of one meter was used on this project. The system is comprised of two modules: an on-the-go shank 

for collecting measurements at a discrete depth as it maps transects across a field (Figure 1), and a probe for 

collecting measurements of the soil profile to a depth of one meter (Figure 2).  Both modules collect visible 
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and NIR measurements (400-2200nm) through a sapphire window pressed directly against the soil, at a rate 

of 20 spectra per second with an eight nm resolution. 

 

       
 
Figure 1. (left) Veris shank-based 

spectrophotometer for near-surface mapping.  

Figure 2. (right) Veris probe-based spectrophotometer 

for profile measurements.  
 

Auxiliary Veris sensors are deployed on the system, including soil electrical conductivity (EC), and probe 

insertion force.  Soil EC measurements relate to soil texture, Vis-NIR spectra relate to soil carbon and 

moisture, and force is used along with the other sensors to estimate soil bulk density. This suite of sensors 

measures soil properties that affect existing carbon levels and future sequestration rates.  Standard 

chemometrics procedures were used for developing soil-spectra calibrations, including principal components 

analysis (PCA) and partial least-squares regression (PLS). A proprietary sample selection technique was 

used to collect calibration/validation soil samples (Christy 2008).  

 

Each field was mapped with the sensor shank implement on 20 m transects, averaging 40-50 data points per 

ha.  From these maps and data, calibration/validation sites were selected using a combination of visual and 

geo-statistical criteria. At each calibration/validation site, the sensor probe was inserted to a depth of 60 cm. 

Soil samples from the calibration/validation sites were collected using the hydraulic probe (0-60 cm) and 

hand probe (0-15 cm).  229 soil samples were analyzed at Kansas State University Soil Testing Lab for 

carbon and nitrogen with a LECO CN2000 using a dry combustion method. Soil moisture and bulk density 

were measured in Veris Technologies’ lab.  Fields were probed with the sensor probe on an average one ha 

grid—resulting in nearly 500 additional insertions. After calibration with lab-analyzed samples, detailed 

estimates of carbon were generated, cross-validated calibrations are applied to the spectra, and maps were 

created (Figure 3). 

 

Using sensor samples, the confidence interval is .29 Mg C/ha. A soil carbon multiplication factor of 1.1 for 

adoption of no-till farming has been proposed by the Intergovernmental Panel on Climate Change (Houghton 

et al. 1996). Depending on how the confidence interval will be applied by carbon aggregators and verifiers, 

that would mean more than 90% of a 10% increase in carbon would be verifiable. Alternatively, using 229 

conventional soil samples resulted in a confidence interval of .77, nearly three times larger. Collection and 

lab-analysis of 2523 samples using conventional methods would have been significantly more expensive.  

An estimate of soil carbon in each field is shown in Table 2. 
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Figure 3. Detailed sensor-based carbon estimates of near-surface (left) and soil profile (right). 

 

Results 
The soil sensor calibrations for carbon were highly correlated with lab-analyzed C. Ratio of performance to 

deviation (RPD) values ranged from 1.94 to 3.74 with an overall RPD of 2.19 (Table 1).  

 
Table 1. Results from Veris sensors and lab analyses for each field. 

 
Table 2. Total baseline soil carbon at four depths in each field.   

 

Conclusions 
On a several hundred-hectare project, commercially available spectroscopy equipment from Veris 

Technologies demonstrated an ability to measure profile soil carbon at the field scale, with the confidence 

needed for regulated carbon trading.  Additional research is needed to develop optimal methods of using a 

combination of lab-analyzed samples and spectroscopic sensors to accurately and affordably measure 

changes in soil carbon levels. 

 

 

Field # Ha R² RPD RMSE-CV

Sensor 

samples 

90% C. I. 

Sensors

Lab 

Samples 

90% C. I. 

Lab

#1 59.13 0.86 2.77 5.20 613 0.41 26 1.68

#2 21.06 0.93 3.74 2.94 146 1.19 22 1.03

#3 48.60 0.73 1.96 6.13 253 0.61 25 2.02

#4 40.50 0.91 3.50 3.30 264 0.68 23 1.13

#5 59.54 0.72 1.94 7.25 83 1.82 26 2.34

#6 91.13 0.76 2.05 9.19 459 0.74 40 2.39

#7 57.11 0.83 2.44 6.25 233 1.15 26 2.02

#8 59.13 0.76 2.07 7.93 216 1.23 25 2.61

#9 51.84 0.82 2.41 6.57 256 1.17 16 2.70

TOTAL 488.03 0.79 2.19 7.11 2523 0.29 229 0.77

 Field # Ha

Mg C/ha       

0-15 cm

Mg C/ha    

15-30 cm

Mg C/ha      

30-45 cm

Mg C/ha     

45-60 cm

Mg C/ha                 

0-60 cm 

#1 59.1 36.9 33.7 30.3 28.0 128.9

#2 21.1 36.9 33.4 29.9 28.2 128.4

#3 48.6 34.7 31.6 27.7 25.3 119.4

#4 40.5 37.4 34.3 29.2 26.3 127.3

#5 59.5 38.0 34.5 26.2 23.1 121.8

#6 91.1 38.7 34.9 27.7 22.6 123.9

#7 59.1 41.2 32.1 26.9 23.0 123.2

#8 57.1 36.4 32.9 25.7 22.7 117.7

#9 51.8 40.0 32.1 24.2 20.7 117.1

Average Mg C/ ha 488.0 37.8 33.3 27.5 24.5 123.1

TOTAL Mg C Project 18,449.8    16,234.7    13,440.7    11,932.4     60,057.7      
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Abstract 
Soil apparent electrical conductivity (ECa) changes due to time-variant soil properties. A long-term soil 

management experiment was surveyed for ECa on 13 occasions to capture changing soil conditions and to 

determine the sources of this variability. Especially subsoil ECa patterns were found to exhibit temporal 

stability, while topsoil ECa patterns were more variable, especially within the conventional tillage (CT) plots, 

in areas with shallow soils, and along the drainage network. The time-stable or mean ECa pattern was 

associated with topography, soil depth and soil structure. The first three principal components explained 90% 

of the total variance and were related to the mean ECa pattern, topography and soil management, 

respectively. Time-lapse images showed how tillage reduced ECa in the CT plots, while it increased 

proportionally more then in the rest of the field when tillage was followed by low intensity rainfall, due to 

higher topsoil porosity and water content. High intensity rainfall caused a proportionally larger ECa 

increment in the direct drill plots as a result of better infiltration conditions and runoff production in the CT 

plots. Electromagnetic induction sensors were found useful for mapping changing soil conditions as a result 

of soil management and external forcing. 

 

Key Words 
Electromagnetic induction, temporal stability, apparent electrical conductivity, time-lapse mapping, soil 

management, hydrological response. 

 

Introduction 
Mobile near-surface electromagnetic induction (EMI) sensors provide a non-invasive means for mapping soil 

apparent electrical conductivity (ECa), which depends not only on time-invariant properties such as clay 

content, but also on time-variable soil properties such as water content and bulk density, among others 

(Friedman 2005). Tillage has a large effect on these time-variable properties, since it changes directly soil 

physical properties (Ahuja et al. 1998) and influences therefore the way a field responds to external forcing 

(i.e. rainfall and evaporation). As a consequence, EMI sensors can be used to monitor at the field scale 

changing soil conditions and to evaluate the impact of different soil management system. The objectives of 

this work were i) to check the existence of temporal stability of ECa patterns in a long-term soil management 

experiment, ii) to identify independent sources of variability, and iii) to map changing soil conditions in 

response to soil management and external forcing. 

 

Methods 
Experimental field and mobile EMI sensor 

The ECa surveys were conducted at the Tomejil Farm long-term soil management experiment in SW Spain 

(Ordóñez et al. 2007), where the agronomical and environmental consequences of conventional tillage (CT), 

minimum tillage (MT) and direct drilling (DD) are being compared (Figure 1).  
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Figure 1.  Topography, with superposed plot limits (dotted lines) and drainage network (blue lines), slope and 

aspect of the experimental field. MT: Minimum Tillage, CT: Conventional Tillage, DD: Direct Drill. 
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Four replicates of each treatment (15×180 m) were disposed in a completely random design within a 3.5 ha 

dry-land field under a wheat-sunflower-legume rotation. The soil is classified as a Chromic Haploxerert (Soil 

Survey Staff 1999) with topsoil clay and organic carbon contents of approximately 60% and 10 g/kg, 

respectively. The field was surveyed on 13 occasions between March 2006 and 2009, in-between harvest and 

sowing times, according to tillage and for different soil moisture conditions. Apparent electrical conductivity 

was measured using a EM38-DD EMI sensor (Geonics Inc, Ontario), which consists of a horizontally and 

vertically oriented dipole. The former provides topsoil (ECas) and the latter subsoil ECa measurements 

(ECad). The sensor was hosted in a protected PVC sled and pulled by an ATV, equipped with a RTK-DGPS 

receiver, a guidance bar for parallel swathing at 3 m and a field computer to log the ECa data, coordinates 

and elevation with a frequency of 1Hz. 

 

ECa data analysis 

Point ECa measurements were interpolated using Ordinary Kriging with local variogram calculation 

(Minasny et al. 2002). In order to integrate and facilitate the comparison of ECas and ECad maps for different 

measurement campaigns, interpolated data were transformed to relative differences, δij, as described by 

Vachaud et al. (1985): 

aij a j

ij

a j

EC EC

EC
δ

−
= ,           (1) 

where aijEC is the ECa at point (pixel) i and survey time j, and 
a j

EC  is the spatial average of the field on 

survey time j. For each location i the mean relative difference, 
iδ , of the 13 measurement campaigns and its 

standard deviation,
iδσ , were calculated in order to evaluate the temporal persistence or rank stability of the 

ECa patterns. Principal component analysis (PCA) was used to extract independent patterns from the 13 δ  

maps for ECas and ECad, representing a large part of the total variability of both data sets. PCA scores were 

mapped for the three first PC´s and used to identify the main sources of variation by associating them with 

physical attributes of the field. Patterns of ECa changes were obtained by differencing δ  maps of 

consecutive surveys, i ij ikδ δ δ∆ = − , where k and j are two consecutive measurement campaigns (Robinson et 

al. 2009). 

 

Results 
ECa data 

The spatial mean ECas and ECad for the 13 surveys ranged from 27 to 84 and from 80 to 137 mS/m, with 

mean values of 59 and 104 mS/m, respectively. The extreme values for ECas and ECad were observed on 

different days, indicating different topsoil and subsoil dynamics. In general, higher ECa values were observed 

during wet periods (e.g. Nadler 2005), while the lowest values were found during dry periods, after summer 

and harvest. Changes of spatial mean ECas, were higher since the main causes of temporal variability such as 

drying-wetting (and shrinkage-swelling), tillage and root development occur mainly in the topsoil. In 

general, probability density functions of both ECas and ECad were close to normal or slightly positively 

skewed, as a consequence of high ECa values in the lowest part of the field, where water and sediments 

accumulated as a result of surface and subsurface flow. 

 

Temporal persistence of ECa patterns. 

The mean relative difference maps for ECas and ECad showed similar patterns [Figure 2 (a-b)], indicating that 

both dipole orientations can be used to map the mean, time-stable, ECa pattern of the field. The observed 

pattern was associated with topography (drainage network), depth to the underlying marl, and aggregate 

shape. ECa values in the eastern corner of the field were about 40% higher than the spatial mean since this is 

a low area. On the other hand, an area in the eastern corner of the field could be identified where ECa values 

were 20% smaller than the spatial mean. Here, the depth to the underlying marl was found to be larger and 

aggregates were found to be prismatic in contrast to the platy or blocky aggregate shape found in the rest of 

the field, leading to a better drainage capacity and dryer soil conditions. The rest of the field showed ECa 

values within ±10% of the spatial mean, with higher values in plot MT4 due to its position within the 

drainage network, and in a part of plot MT3, as a consequence of a smaller soil depth. The associated 

δσ maps [Figure 2 (c-d)] show a better temporal stability for the ECad data, since most of the factors 

affecting time-variable soil properties are more active in the topsoil layer. As expected temporal stability was 

generally worse in the CT plots, in areas with a shallow soil, and along the drainage ways. 
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Figure 2.  Mean relative difference, δδδδ , and corresponding standard deviation, δδδδσσσσ , calculated from the 13 ECa 

surveys, in horizontal (ECas) and vertical dipole mode (ECad).  

 

Principal component analysis 

The first three PC´s represented about 90% of the total variance. For ECas they accounted for 65, 14 and 

11%, and for ECad, 74, 13 and 6% of the total variance, respectively. Figure 3 shows that the pattern of PC I 

corresponded with the mean, time stable, ECa pattern, as shown in the δ maps of figure 2. The pattern of the 

second component could be roughly related with topographical attributes such as slope and aspect, while PC 

III showed a pattern related with soil management. 
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Figure 3.  Maps of the scores of the first three principal components, representing 65, 14 and 11 % of the total 

variability, respectively, as calculated from the 13 ECas surveys. 

 

Patterns of changing ECa 

Figure 4 (a-b) shows the ECas and ECad δ∆  maps calculated from surveys on 08.09.18 and 08.11.10, where 

mouldboard ploughing in CT and disc harrowing in MT on 08.10.06 caused a proportionally larger decrease 

of ECa in the CT plots due to the plow-generated porosity. The largest differences could be observed in the 

ECas δ∆  map since topsoil ECa especially decreased after tillage. However, tillage followed by low intensity 

rainfall caused proportionally larger δ∆  values in the CT plots, especially for ECas, as a result of the higher 

porosity and the presence of a plough pan [Figure 4 (c-d)]. The δ∆  maps in figure 4 (e-d) clearly show how 

the different soil management systems responded to a single intense rainfall event (115 mm). Proportionally 

larger increments can be observed in the DD plots as a result of higher soil water content increments. The 
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existence of better infiltration conditions in the DD plots favored the recharge of the soil profile and avoided 

runoff production, in contrast to the MT and CT plots where significant runoff and sediment yield was 

observed. 
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Figure 4.  Differenced δδδδ  ECa, δ∆ , maps calculated from surveys on 08.09.18 and 08.11.10 (a-b), 06.03.10 and 

06.03.29 (c-d), and 07.11.07 and 07.11.29 (e-f), showing the effect of ploughing, the combined effect of ploughing 

and low intensity rainfall and the effect of high intensity rainfall, respectively. Maps in the upper row (a, c, e) are 

for ECas. 

 

Conclusion 
The time-stable, mean pattern, obtained from 13 ECa surveys of an experimental field could be related with 

topographical characteristics, soil depth and soil structure, while the mean pattern, the interaction of 

topography with soil water content, and soil management were identified as independent sources of 

variability, explaining 90% of the total variability of the spatio-temporal datasets. The electromagnetic 

induction sensing system used here was found very adequate for mapping changes in ECa-related time-

variable soil properties such as soil water content or porosity and can therefore be used to compare the 

spatially distributed performance of different soil management systems at the field scale. 
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Abstract 
For land management options, a sharp partitioning of areas is suitable. However, applied soil science usually 

provides integrated data and different information from identical sites and does not supply a partitioning in 

respect to all variables. In this paper, we describe a way for deriving reasonable partitioning of sites from 

multidimensional data sets by an integrated statistical approach: the clustering of different discrete field data. 

For this purpose, two separate work packages (WP) are suggested. In the first WP, sets of different data are 

standardize and discretize in order to get collocated data on predefined locations This step is precondition for 

further processing of multi-dimensional statistical analysis. The second WP leads from the different sets of 

collocated data to a map of partitions representing different soil units. Using an example of field data, we 

could show that cluster analysis works as a useful tool for site partitioning. 

 

Key words 

Rapid soil survey, geophysical approaches, soil moitrure, bulk density, electromagnetic induction. 

 

Introduction 

Investigation of soil properties will become increasingly important in the future (e.g. Lin 2003, Hartemink 

and McBratney 2008). In particular, assessment of hydrological soil qualities, such as water content and 

hydraulic conductivity is essential to define appropriate strategies for sustainable land and water resource 

management. However, direct data acquisition of these relevant properties by point measurements is 

complicated and costly. Hence, several possibilities to acquire relevant information of soil properties have 

been develop in the last decades. An established and accepted way is the derivation of subsurface details 

from geophysical data, for example apparent electric conductivity, georadar, and gamma ray radiation (e.g. 

Hayley et al. 2007, Weller et al. 2007, Beckett 2008, Mendez et al. 2009). The main benefit of these 

indirect methods is the ability to measure soil parameters quickly and in a non-invasive manner. This is a 

great advantage compared to conventional pedological data acquisition. Regrettably, in respect to the 

methods these geophysical measuring techniques provide integrated data and different information for the 

same site and do not reflect the entire area. In the praxis of applied soil science however, often a sharp 

partitioning of areas is required for land management measures. Hence, one challenge in land use 

management is the definition of a reasonable partitions from multidimensional data sets. In this paper, we 

will describe a transferable approach for sharp site partitioning - independently from number and amount of 

the available data sets. 

 

Proposed Work Flow   
Regarding the different data sources and soil parameter databases, a standardized program for site 

characterization is required. We concern the problem by an integrated statistical approach – the clustering of 

different discrete geophysical data (Dietrich et al. 1995, Dietrich and Tronicke 2009). The aim of this 

procedure is the partitioning of test sites according to their natural characteristics. With respect to the 

different established measurement methods and their corresponding data sets, we describe our method first 

schematically to make the approach transferrable to other data sources.  Afterwards, we use geophysical field 

data as an example for the applicability of the method. The workflow is divided into two separate work 

packages (mainstays), one for the preparation and discretization of the field data, and another one for 

statistical approaches and clustering. The first work package contains the following operational sequences: 

(i) interpolation from point data, (ii) conversion of map data into standardized discrete grid data, (iii) 

blanking the maps and generation of ASCII files (see Figure 1). The second work package comprises the (i) 

consideration of data relationships (ii) selection of the appropriate variables, and (iii) the cluster analyses. As 

example for illustrating this approach, we used electromagnetic induction (EMI) data sets from a test site in 

Graswang / Bavaria, Germany obtained by a near surface survey. Four different data sets from different 

depths (integral up to 0.75 m, 1.50 m 3 m, and 6 m below surface) were exploited to conduct site 
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partitioning. These data sets contain values from apparent electric conductivity measured with the 

instruments GEONICS EM38DD and EM31 (Geonics Limited, Mississauga, Ontario Canada) in horizontal 

and vertical configurations and the related spatial information, (GPS coordinates northing and easting). At 

step i) a variogram from each of these data sets was plotted and a function was fitted with respect to the 

spatial dependency of the data in the field; a typical view of an unconditioned data set and its corresponding 

variogram is shown in Figures 1a and 1b using Surfer 8 (Golden Software).  

 

 
a) 

 
b) 

 
c)  

 
d) 

 
Figure 1.  Work package A: a) plot of a raw EMI data set, in this case EM38V, b) corresponding variogram, c) 

interpolated map, d) discrete point values as precondition for cluster analysis 

  
Using the variograms for each data set, n- interpolated maps could be generated to fill the data gaps between 

point values (in this case four maps). Step ii): after interpolation, one of the maps should be selected as 

matrix for discretization and blanking; usually the one with the smallest spatial expansion. In respect to the 

standard deviation of the interpolation, the map was blanked from uncertain data, in our case in the angle of 

the orthogonal map. Now the blanked map was discretized using the “mosaic” function of Surfer by 

choosing a convenient grid size and saved as ASCII file. The blanked data appears within the table as 

unrealistically high values – an imported attribute for selecting the excessive data from the other maps. 

Without blanking, all other maps were processed like the matrix map with the same grid coordinates and 

saved as ASCII files. Now all data sets have the same number of rows with exactly the same coordinates. 

After merging all ASCII files to one collective ASCII table, the excessive data could be deleted simply by 

sorting the unrealistically high values out from matrix table. At this point a discrete ASCII file with four 

different variables is prepared, ready for multivariate statistical analysis and also visible as classified post 

map (see Figure 2).  
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a) 

 
b) 

 
c) 

 
d) 

Figure 2: Visualization of four EC data sets with same grid coordinates – result of work package 1: a) EM38 

horizontal mode, b) EM38 vertical mode, c) EM31 horizontal mode, d) EM31 vertical mode 

 

The final aim of the next work package - statistical analysis and clustering - is to define different areas of the 

test site in respect to their properties by means of cluster analysis. Precondition for building useful clusters is 

the independency of the variables. Therefore, the next step of our approach is the comparison of the variables 

regarding their dependency. In this study, we apply a classical factor analysis using the statistical program 

SYSTAT 12. If the factor analysis detects a strong dependency between variables, it is recommended to use 

only one of them for clustering. In our example, only one of the EM38 variables is affected due to the 

similarity of the EM38H and EM38V data. Nevertheless, for demonstration in this study, both values were 

used for further processing. After selecting independent variables, the proper cluster algorithms were run. A 

cluster analysis is the assignment of a data set into subsets (clusters) so that data properties within the same 

cluster are similar. This method allowed the multidimensional comparison of data points and their 

classification – a well-established tool in social science, but not much applied in geosciences. Clustering can 

either be hierarchical or partitional (K-means clustering - partition n observations into k clusters). In this 

study, we use the K-means clustering only. In a K-means algorithm, each data point is compared with its 

proximate neighbor related to similarities and builds with its co-natural neighbor the first cluster group. This 

operation proceeds until the desired number of clusters is reached. The algorithm steps are: (i) choosing the 

number of clusters - k, (ii) randomly generating k clusters and determining the cluster centers, (iii) assigning 

each point to the nearest cluster center, (iv) recomputing the new cluster centers, (v) repeating the two 

previous steps until some convergence criterion is met - usually until the assignment hasn't changed (J. 

MacQueen 1967). Again, we used the statistical program SYSTAT 12 and ran a K-mean cluster algorithm 

with four variables to three and four reasonable groups, respectively. The result was a new row in the 

collective ASCII table, the cluster each coordinate pair belongs to, again visible as classified post map (see 

Figure 3). 
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a) 

 
b) 

 
Figure 3 Results of cluster analysis: a) clustering into three partitions, b) clustering into four partitions; 

precondition for partitioning of sites by clustering are discrete and standardized soil parameters 
 

Conclusion 

For land management options, a sharp partitioning of areas from available multidimensional data sets is 

required. Clustering of field data is an appropriate tool for sharp partitioning of sites - independently from 

type and character of the database. Precondition is the existence of discrete and standardized parameters at 

predefined locations. Following the method used here, a direct and independent statistical comparison of 

properties and their partitioning of the investigated area is possible. 
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ABSTRACT 

Many empirical and fractal models have been developed to describe the soil water retention curve (SWRC). 

In this study, the fractal dimension of soil texture, was used instant of the fractal dimension of SWRC in 

Tyler and Wheatcraft (1990) model; the estimated results being compared with experimental data for 

verification and compared with the estimated results from Campbell (1974) empirical model. Results showed 

a reasonably good estimation of soil water retention curves for the most soils by both fractal and empirical 

models. Also the results showed that there is not significant difference between empirical and fractal  models 

in estimating SWRC, when the fractal dimension of SWRC estimated by soil texture fractal dimension. 

 

Key words 
Empirical model, fractal model; soil texture; soil water retention curve. 

 

Introduction 
The soil water retention curve (SWRC) is one of the important hydraulic functions for modeling flow 

transport in porous media. Due to difficulties and labor costs when measuring SWRC, it has become 

necessary to develop methods to describe the function utilizing readily available data, such as soil texture. 

Many empirical models for SWRC have been developed (Brooks and Corey 1964; van Genuchten 1980; 

Russo 1988). In these models parameters were usually estimated by fitting the functions with measured data, 

and the pedotransfer functions (PTFs) were used empirically to describe the relationship between the 

parameters and basic soil data (Minasny et al. 1999; Wosten et al. 2001). Based on the assumption that either 

the soil solid phase or the soil void space has affine self-similarity, the soil phases can be described using the 

fractal scaling theory. Several models have been derived either using the fractal nature of the solid or void 

phases or both (Tyler and Wheatcraft 1990; Rieu and Sposito 1991a; Perrier et al. 1996; Perfect et al. 1999). 

Tyler and Wheatcraft (1990) applied the Sierpinski Carpet (Mandelbrot 1983) to describe the soil pore size 

distributions and developed a power-law form for SWRC, similar to the functions of Brooks and Corey 

(1964) and Campbell (1974). Perfect et al. (1999) developed SWRC models, which were in a power-law 

form but differed from Campbell (1974) models. Fractal dimensions of the solid matrix ( i e., soil particle 

size distribution and soil texture) and the void phase (i.e., soil pore size distribution and soil pore surface) 

can characterize the fractal nature of soils. The objective of this study was to determine the fractal dimension 

of  soil texture and replace it with the fractal dimension of SWRC for its estimation and comparing the 

results with the Campbell (1974) empirical  model.  

 

Methods 
The used fractal and empirical Models  

the Campbell (1974) model was used as an empirical  model that express by equation (1): 

                                                                                                                                  (1) 

The fractal model was used in this study was the Tyler and Wheatcraft (1990) model that express by Eq. 

(2): 

                                                                                                                                        (2) 

Where ψ, is the capillary tension head (cm) and θ is the soil water content (cm3 crn3), θs, is the saturated soil 

water content (cm3 crn3), ψa is the air entry pressur (cm), Dm is the fractal dimension of SWRC, and bc, is an  

empirical coefficient. 
 

Samples and measurements 

Experimental data of texture, and soil water retention for 40 soils collected at different places in Iran were 

used to estimate the fractal dimension of SWRC by the mass fractal dimension of soil texture and water 
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retention curve. The soils, cover all  range of texture classes. Undisturbed  samples were taken directly from 

each soil sample site was used for measuring SWRC. Also, 500 g of disturbed soil samples were collected 

from each sample site for determining soil texture according to the US Department of Agriculture (USDA) 

texture classification standards. Soil water retention data were measured using the pressure plate apparatus at 

seven metric potentials (100, 300, 1000, 3000,  5000, 10000, 15000 cm). 

 

Determination soil texture fractal dimension 

The texture (Sand, silt and clay) data and the log-transformed form of the Tyler and Wheatcraft (1992) 

equation were used to determining the fractal dimension D; By employing a linear regression between the 

cumulative log mass fractions and log characteristic particle radius(R) for all soils, the fractal dimension D, 

was then determined. Tyler and Wheatcraft (1992) equation express as: 

                                                                                                                            (3) 

where r is the grain size, R represents the characteristic particle radius, M (r < R) is referred to as the mass of 

grain radius r less than R, MT is the total mass, R, is the maximum characteristic particle radius, and D, is 

the mass fractal dimension. 

 

Models verification and comparison 

The estimated soil water retention curves were compared with the measured data, and the difference between 

the estimated soil water retention curves and the measured data was then quantified by using the Mean 

absolute error (MAE) and Mean Square error (MSE). Linear regression was then performed between 

measured and estimated water content for all soils and coefficients of determination (r
2
), was determined. 

The MAE, MSE and r
2
 were used for models comparison. 

 

Results  
Figure 1 shows the results of a linear regression between the cumulative log mass fractions and log 

characteristic particle radius for a typical soil: soil 6 (clay). The mass fractal dimension determined with soil 

texture data, ranged between 2.95 to 2.61 for clay and sandy soil textures. Tyler and Wheatcraft (1992) using 

the soil mass distribution, Rieu and Sposito (1991b) using the aggregate size in the three-dimensional 

Euclidian domain have found that the fractal dimension of soils were in the range of 2 to 3. 

Comparing all data of measured soil water content versus the estimated by using models showed a 

reasonably good estimation of soil water retention curves for the most soils. Fractal model with using mass 

fractal in it, showed a better estimation for light textured soils than the other soils.  The estimated results 

compared with the measured data having mean absolute errors less than 0.05 for over 63% and 67%of the 

measurements,  for fractal and empirical model respectively.   
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Figure 1.  Linear regression between the cumulative log mass fractions and log characteristic particle radius for 

soil 6. 

 

Table 1.  MAE and the MSE and R 2 obtained form comparing all data of the measured soil water content 

versus the estimated by using fractal and empirical models. 

MAE MSE R
2
 

Model 
Max Min Mod Max Min Mod Max Min Mod 

Fractal 0.14 0.01 0.05 0.02 0.0002 0.005 0.99 0.91 0.98 

Empirical 0.11 0.01 0.5 0.01 0.0002 0.003 0.99 0.84 0.98 
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08Table 1 shows the MAE and the MSE and R 
2 
obtained form comparing all data of the measured soil water 

content versus the estimated by using fractal and empirical models. This results show that there is not 

significant difference between empiricl, Campbell(1974), and fractal, Tyler and Wheatcraft (1990), 
models in estimating SWRC, when the fractal dimension of SWRC estimate by soil texture fractal 

dimension. Estimated and measured SWRC had shown in Figure 2 for three typical soil: soil 7 (sandy clay), 

soil 20 (silty clay loam) and soil 39 (sandy). 

 

Conclusion 
The mass fractal dimension determining with soil texture data, ranged between 2.95 to 2.61 for clay and 

sandy soil textures. The results indicated that the model with the fractal dimension calculating from the soil 

texture data was capable of predicting SWRC with reasonable accuracy, especially for light texture soils. 

Nevertheless it is predicted that it gave better estimated results of soil water content if the fractal dimension 

of SWRC is estimated in low tension (<1 atm) and high tension(>1) potential separately. 
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Figure 2.  Estimated and measured SWRC had shown in Figure 2 for three  typical soil: soil 7 (sandy clay), soil 

20 (silty clay loam) and soil 39 (sandy). 

 

The results also showed that there is not significant difference between empirical, Campbell(1974), and 

fractal, Tyler and Wheatcraft (1990), models in estimating SWRC, when the fractal dimension of SWRC 

estimate by soil texture fractal dimension.  
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Abstract 
The objective of this research was to calculate the correlation between soil resistance penetration and 

apparent soil electrical conductivity. The studied soil was a gley cambisol sited at Lugo (Northwest Spain) at 

6 ha area with forage maize under no tillage system after sowing. ECa was measured with EM38-DD device. 

Soil resistance penetration was measured with an automatic static penetrometer VERIS P3000. Measured 

data were analyzed using classical statistics and geostatistics. The linear correlation data shows a medium 

negative correlation between soil resistance penetration and ECa. The spatial variability patterns are the same 

for the two studied parameters. The use of soil sampling schemes techniques favours the location of 

measurements points for soil resistance penetration measurements. 

 

Key Words 
Chemical and physical attributes, no-tillage, geostatistics, sampling design. 

 

Introduction 
The electrical conductivity (EC) is the property that has a material to transmit or conduct electrical current 

(Kitchen et al. 1996). The apparent soil electrical conductivity (ECa) is influenced by various factors such as 

soil porosity, concentration of dissolved electrolytes, texture, quantity and composition of colloids, organic 

matter and water content in the soil (Rhoades et al. 1976). Recent research found that the measurement of 

apparent soil electrical conductivity, the use of electromagnetic sensors, has the potential to make rapid 

measurements of water content in soil, the clay content of soil, cation exchange capacity and levels of 

exchangeable calcium and magnesium, depth horizons type "pan", organic matter content, salt content soil 

solution (Lesch et al. 2000). In this way, measurements of apparent soil electrical conductivity (ECa) can be 

used to determine specific management zones. The use of farm machinery in agricultural production systems 

disturb the natural characteristics of the soil, often favouring the formation of compacted layers that affects 

to soil aeration and infiltration capacity. Kondo and Dias Junior (1999) show that the different management 

systems affect to the physical and mechanical soil properties of soil with different levels of compaction, 

depending on water content, different soil types and period of the machinery operations. According to 

Camargo and Alleoni (1997) the compaction of soil is a complex concept and difficult to describe and 

measurement, and is closely related to soil physical, chemical and biological parameters, which are important 

for plant development. Hill and Meza-Montalvo (1990) describe that agricultural machinery traffic during 

the process of agricultural production may increase the values of soil density and soil resistance to 

penetration to 50 %. By this reason, quantification of the soil resistance to penetration (RP, MPa) induced by 

soil management is an important parameter for maintaining desirable levels of production and environmental 

sustainability. The aim of this study was to use data from apparent soil electrical conductivity (ECa), 

measured by electromagnetic induction for determining the optimized sampling scheme of soil resistance to 

penetration (RP) and determines the linear and spatial correlation. 

 

Material and Methods 
The study area surface is 6 ha and is located at Castro Ribeiras de Lea, Lugo, Spain (Figure 1a). The 

geographical coordinates of the study area are: 43º 09' 49'' N and 7º 29' 47'' W, with average elevation of 410 

and average slope of 2 % (Figure 1b). The soil of the area is classified according to FAO-ISRIC (1994) as 

Gley Cambisol. The crop in the moment of measurement was maize for silage under no tillage system, in the 

last years the crop was permanent grassland for silage. The apparent soil electrical conductivity (ECa, mS/m) 

was measured with an induction electromagnetic device EM38-DD (Geonics Limited). The equipment 

consists of two units of measurement, one in a horizontal dipole (ECa-H) to provide and effective 

measurement depth of approximately 1.5 m and other one in vertical dipole (ECa-V) with an effective 

measurement depth of approximately 0.75 m (McNeill 1980). The data were collected on 23/06/2008 in  
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Figure 1.  Location map of study area (a); digital elevation map of the study area (b); Sampling scheme of soil 

apparent electrical conductivity (ECa) in 1859 points and the soil resistance to penetration (RP) at 40 points (c). 

 

1859 points (Figure 1c), using a field computer and a GPS RTK to georeference the electrical conductivity 

measurements. The software ESAP 2.35 (Lesch et al. 2000) was also used to determine the optimum position 

of the 40 sample points (Figure 1c) for sampling the soil resistance penetration. The soil resistance to 

penetration (RP, MPa) was measured in 40 optimized sampling points using the penetrometer static Veris 

Profiler 3000 (Veris Technologies Inc.). In this study the soil resistance to penetration was grouped into the 

following layers: 0.0-0.1 m (RP0.0-0.1), 0.1-0.2 m (RP0.1-0.2), 0.2-0.3 m (RP0.2-0.3), 0.3-0.4 m (RP0.3-0.4), 0.4-0.5 

m (RP0.4-0.5), 0.5-0.6 m (RP0.5-0.6), 0.6-0.7 m (RP0.6-0.7), 0.7-0.8 m (RP0.7-0.8) and 0.8-0.9 m (RP0.8-0.9). In each 

sample location RP profile was measured in six near points. The RP data showed for each location is the 

mean of the six profiles measured. The analysis of spatial variability was performed using the semivariogram, 

based on the assumptions of the intrinsic hypothesis, using the program GEOSTAT (Vieira et al. 2002). 

 

Results and discussion 
Statistical analysis (Table 1) shows that the resistance to penetration at the layer of 0.0-0.1 m deep (RP0.0-0.1) 

has a high value of coefficient of variation (67.30 %). Other data show values of coefficient of variation (CV, 

%) medium. The average values of the soil resistance to penetration at the different soil layers described an 

increase in the soil resistance to penetration (RP, MPa) in depth. 

 

Table 1. Statistical parameters. 
Equipment Attribute Unit N Minimum Maximum Mean Variance SD CV Skewness Kurtosis 

ECa-V 1859 4.13 20.13 11.21 6.12 2.47 22.07 0.485 -0.243 
EM38-DD 

ECa-H 
mS/m 

1859 6.63 20.00 12.12 3.22 1.79 14.81 0.839 1.285 

RP0.0-0.1 140 0.30 2.47 0.64 0.18 0.43 67.30 1.169 1.858 

RP0.1-0.2 134 1.10 3.28 2.16 0.40 0.63 29.41 -26.517 -121.478 

RP0.2-0.3 131 1.49 3.53 2.63 0.32 0.57 21.78 -0.423 -0.677 

RP0.3-0.4 102 1.68 4.85 3.05 0.53 0.73 23.89 0.265 0.025 

RP0.4-0.5 84 1.74 5.54 3.12 0.94 0.97 31.17 -0.211 4.172 

RP0.5-0.6 72 1.92 5.32 3.04 0.86 0.92 30.43 -19.154 -60.403 

RP0.6-0.7 63 1.60 5.59 3.33 1.46 1.20 36.31 -16.549 -88.761 

RP0.7-0.8 32 1.54 4.85 3.09 0.99 0.99 36.26 -34.572 -285.556 

Profiler 3000 

RP0.8-0.9 

MPa 

27 1.62 4.43 3.02 0.87 0.93 30.87 -47.972 -495.883 

SD: standard deviation; CV: coefficient of variation (%). 

 

The coefficients of linear correlation (Table 2) shows an inverse relationship between the soil apparent 

electrical conductivity measured with the EM38-DD (ECa-V and ECa-H) and the soil resistance to 

penetration (RP0.0-0.1, RP0.1-0.2, RP0.2 - 0.3, RP0.3-0.4, RP0.4-0.5, RP0.5-0.6, RP0.6-0.7, RP0.7-0.8 and RP0.8-0.9), or the 

measurement points with larger ECa values have lower values of the RP. This is because ECa is highly 

dependent on soil water content (Rhoades et al. 1976; Lesch et al. 2000). Ehlers et al (1983) describe 

resistance to soil penetration (RP) is the main impediment to root growth, and in turn the RP is much more 

influenced by the soil water content and density of soil. Thus, lower soil water content reduces the values of 

ECa and increases the values of RP. The best correlation was found between ECa-V x RP0.3-0.4 (-0.695). The 

existence of quadratic trend for the data is related to the existence of groundwater level near the surface in 

the lowest area (Figure 1b). The residuals semivariogram of electrical conductivity in the vertical dipole 

(ECa-V) has an spherical model, while ECa-H has a exponential model (Table 3). RP0.0-0.1, RP0.1-0.2, RP0.2-0.3, 

RP0.3-0.4 and RP0.4-0.5 were fitted the gaussian model (Table 3). Soil resistance to penetration for deeper layers 

(RP0.5-0.6, RP0.6-0.7, RP0.7-0.8 and RP0.8-0.9) showed pure nugget effect. Generally the presence of pure nugget 

effect is because the pattern and number of measurements was not sufficient to detect the spatial variability 

of the studied properties. In this case, the presence of pure nugget effect for RP0.5-0.6, RP0.6-0.7, RP0.7-0.8 and 



© 2010 19th World Congress of Soil Science, Soil Solutions for a Changing World 

1 – 6 August 2010, Brisbane, Australia.  Published on DVD. 
51 

Table 2.  Coefficients of linear correlation. 

  --- EM38-DD --- --------------------------------------- Profiler 3000 --------------------------------------- 

  ECa-V ECa-H RP0.0-0.1 RP0.1-0.2 RP0.2-0.3 RP0.3-0.4 RP0.4-0.5 RP0.5-0.6 RP0.6-0.7 RP0.7-0.8 RP0.8-0.9 

ECa-V 1.000           EM38-

DD ECa-H 0.748 1.000          

RP0.0-0.1 -0.356 -0.438 1.000         

RP0.1-0.2 -0.498 -0.559 0.660 1.000        

RP0.2-0.3 -0.604 -0.593 0.411 0.847 1.000       

RP0.3-0.4 -0.695 -0.526 0.295 0.741 0.789 1.000      

RP0.4-0.5 -0.445 -0.264 0.231 0.737 0.743 0.730 1.000     

RP0.5-0.6 -0.518 -0.435 0.219 0.510 0.392 0.467 0.630 1.000    

RP0.6-0.7 -0.211 -0.396 0.430 0.611 0.304 0.317 0.382 0.782 1.000   

RP0.7-0.8 -0.490 -0.420 0.416 0.477 0.300 0.323 0.377 0.460 0.836 1.000  

Profiler 

3000 

RP0.8-0.9 -0.672 -0.624 0.570 0.675 0.451 0.477 0.407 0.198 0.785 0.894 1.000 

 

Table 3.  Semivariogram models and parameters. 

Variable Model C0 C1 a (m) SDR 

ECa-V Residual Spherical 0.20 5.00 120.00 3.85 

ECa-H Residual Exponential 0.65 2.30 110.00 22.03 

RP0.0-0.1 Residual Gaussian 0.00 0.08 70.00 0.00 

RP0.1-0.2 Gaussian 0.00 0.55 140.00 0.00 

RP0.2-0.3 Gaussian 0.00 0.42 170.00 0.00 

RP0.3-0.4 Gaussian 0.00 0.70 140.00 0.00 

RP0.4-0.5 Residual Gaussian 0.00 0.50 100.00 0.00 

RP0.5-0.6 Pure nugget effect 

RP0.6-0.7 Pure nugget effect 

RP0.7-0.8 Pure nugget effect 

RP0.8-0.9 Pure nugget effect 

C0: nugget effect; C1: structural variance; a: range (m); SDR: spatial dependence ratio (%). 

 

RP0.8-0.9 is because the measuring equipment (Veris P3000) introduced a system security that makes the guide 

back to starting position if values of RP greater than 5.5 MPa (Veris Technologies Inc) are found. If the 

penetrometer cone reach to a soil layer with values greater than 5.5 MPa or even a stone, automatically 

returns to the original position, making the number of values in depth is limited due to intrinsic factors of the 

soil (Table 1). The values of range (a, m) are around 115.00 m to the data from ECa, and some of 124.00 m 

for the data of RP. The highest value of range was for RP0.2-0.3 (170.00 m) and the lowest value for RP0.0-0.1 

(70.00 m). The spatial dependency ratio (SDR, Table 3) shows that a high spatial dependence occurs 

between samples. 

 

The maps of spatial variability (Figure 4) show that the maps of ECa-V and ECa-H show a similar pattern in 

the distribution of the contour lines. Mapping of resistance to penetration into the layer of 0.0-0.1 m deep 

(RP0.0-0.1) have low values of RP in the majority of area, where the highest values of RP are concentrated in 

the lower right side. Map of RP0.1-0.2 shows greatest values of RP (MPa) when compared with RP0.0-0.1.  
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Figure 2. Maps of soil apparent electrical conductivity (ECa-V and ECa-H) and soil resistance penetration (RP0.0-

0.1, RP0.1-0.2, RP0.2 - 0.3, RP0.3-0.4 and RP0.4-0.5) obtained with ordinary kriging. 
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The maps of soil resistance to penetration (RP0.2-0.3, RP0.3-0.4 and RP0.4-0.5) show similar pattern to RP0.1-0.2 

map. The presence of the highest values of RP (MPa) in the upper part of the area coincides with the maps of 

ECa-V and ECa-H that have lower values of ECa in this area, corroborating the data of Table 2 that shows an 

inverse relationship between electrical conductivity and the soil resistance to penetration. In this way, the use 

of electrical conductivity data for optimizing the sampling of the soil resistance to penetration proves its 

efficiency mainly because the two variables are correlated with soil water content. 

 

Conclusions 
The data of EC and RP showed low values of coefficient of variation (CV, %), except for the soil resistance 

to penetration into the layer of 0.0-0.1 m depth that has a high value of CV (60.30 %). The gaussian model 

was fitted to the data of soil resistance penetration (RP0.0-0.1, RP0.1-0.2, RP0.2-0.3, RP0.3-0.4 and RP0.4-0.5). The 

presence of pure nugget effect for data for soil resistance penetration in depth (RP0.5-0.6, RP0.6-0.7, RP0.7-0.8 and 

RP0.8-0.9) is caused by to the limited number of data in these layers once in this layer the values were often 

higher than the measurement value limit of the equipment (5.5 MPa). Data of apparent soil electrical 

conductivity (ECa) was used to determine the optimized sampling scheme of the soil resistance penetration 

(RP), this methodology has proved to be efficient and capable for representing the spatial variability pattern 

of soil resistance penetration (RP). The maps of spatial variability shows the inverse correlation between the 

data of ECa and RP, the areas with higher values of ECa-v and ECa-H have smaller values of RP once both 

properties are related to the soil water content. 
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Abstract  
The uplands of northwestern Thailand are highly susceptible to soil erosion. The high degree of soil 

degradation originates mainly from unsustainable farming practices on steep terrain. The situation could be 

improved by sustainable land use planning. Therefore information is needed about the location of erosion-

prone areas and the state of soil degradation. Our study aims to provide decision makers with maps 

containing these informations. As the determination of actual soil erosion rates can be time consuming, we 

tested if radio signatures (K, eTh) can be used as proxies. Therefore, we compared the data of topsoil 

thickness and erosion measurements by Gerlach troughs with the gamma-ray signatures of these sites in an 

upland rice field in Mae Hong Son province. The results show a significant correlation between the erosion 

measurements and the K/eTh ratio. As next step an interpolated erosion map will be created using the data 

collected from the Gerlach troughs. This map will be overlain with the interpolated radiometry map in order 

to calculate the goodness of their fitting. If the fitting is significant, such gamma-ray interpolation maps can 

be used to pinpoint erosion hot spots on field scale and give information about the actual state of soil 

degradation.  

 

Key Words 
Erosion hazard zones, sloping land, rainfed rice field, northern Thailand, radiometry 

 

Introduction 
The livelihoods of farmers in northwestern Thailand depend on the quality of the soils on which they 

cultivate their crops. Unfortunately the erosion on these already due to their steepness (mostly >25 degrees) 

highly endangered soils is further expedited by unsustainable land use practices, like shortening of the 

traditional fallow period or the intensive cultivation of upland rice and maize (Schuler 2008). These practices 

result in strongly eroded soils, leaving in certain areas less than 10 cm of topsoil thickness. The further 

deterioration of the sloped farmland could be avoided by sustainable land use planning. Our study aims to 

provide decision makers with maps indicating the location of high risk erosion spots within the fields and the 

state of actual soil degradation. These soil degradation maps would enable them to plan and implement 

adapted anti-erosion measures like vetiver grass strips (Mattiga and Nareuban 2005) or convince farmers to 

change the land use for such fields altogether. 

 

For the production of such soil degradation maps detailed information about the specific erosion rates of 

each field would be needed. As this is a time consuming process, we tested if radio signatures, which are 

more rapidly measured, can be used as proxies for soil erosion. The basis for this approach is the fact that 

illuviation type soils are dominant in Northern Thailand and that in these soils the Bt-horizon contains a 

higher concentration of K-rich clay minerals than the overlying eluviated topsoil. Hence, when the topsoil is 

eroded, the K-rich Bt-horizon is closer to the surface enhancing the K-radio signature (Wilford 1995; Tyler 

2008; Schuler et al. 2009). 

 

Material & Methods 
For this study we selected an obviously highly eroded upland rice field near the village Bor Krai in Phang 

Ma Pha District, Mae Hong Son Province, northwestern Thailand. The soil of the rice field is classified 

according to WRB 2006 (IUSS Working Group 2006) as Alisol. The parent material is claystone (Schuler 

2008). On this field 21 Gerlach troughs (=GT, in 6 rows, each containing 2-4 GTs, distributed over the slope 

in a W-shape) are installed, which are used to measure the soil loss and deposition along the slope taking 

each Gerlach trough’s catchment area and the discharge of the respective upslope row into account. At all 

GT locations the radio signatures of potassium (K) and thorium equivalent (eTh) were measured once in the 

dry season using a GRM-260 handheld radiometric device (Gf Instruments, s.r.o. Geophysical Equipment 

and Services, Czech Republic). Additionally inclination and topsoil thickness were measured at the Gerlach 

trough positions as well as in between once at the end of the rainy season. In order to test radio signatures as 
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potential proxies for erosion the correlation was calculated for the radio signatures (especially K, K/eTh) 

with GT-erosion measurements as well as topsoil thickness using SPSS 17. Therefore the erosion/deposition 

data of each GT was summed up over one rainy season (April – July 2009).  

 

Results 
Data with relevance to soil erosion measured on the sloped rice field show the following ranges: 

 
Table 1. Descriptive statistics for erosion relevant data on the experimental rice field. 

 Minimum Maximum Mean Coefficient  

of variation (%) 

Inclination (°) 17 32 24.86 14.6 

Topsoil depth (cm) 3 19 8 43.97 

Cumulative  

annual erosion/GT

(kg ha-1) 

-12926.80 14730.81 -172.961 -2797.43 

K (%) 0.83 1.54 1.23 15.04 

eTh (%) 5.05 11.29 9.52 14.46 

 

No significant correlation was found between the topsoil thickness and the single nuclide specific 

radiometric measurements. Also no significant correlation was found between K alone and the erosion data.  

Nevertheless the K/eTh ratio and the total cumulative erosion data over one rainy season per GT showed a 

highly significant negative correlation with a Pearsons Correlation Coefficient of r = -0.629 at p< 0.05 

(exactly 0.003). 

Linear Regression: R²= 0.395, F=11.772, p<0.05, y=1834.942 x – 895528.1 (Figure 1). 

 

 
Figure 1. Linear regression of K/eTh and annual cumulative soil erosion as measured by GTs. 

 

Discussion 
Contrary to our initial hypothesis no significant correlation between the topsoil thickness and the single 

nuclide specific radiometric measurements (K) was found, which is at first glance surprising, but some 

reasons come to mind:  

 1. The topsoil thickness along the measured section shows only minimal variations as the rice field 

comprises only a part of the middle slope, but neither upper nor base slope areas.  

2. The soil material is not homogenous due to small scale rill erosion (see outlier in Figure 1), landslides, 

land use history and variability within the parent mudstone, leading to different radioelement levels.  

3. The number of measurements, both radiometric (N = 21) and topsoil thickness (N = 58), might be too low 
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to produce significant statistical proof.  

A significant negative correlation was found between the erosion rate measurements and the ratio of K/eTh 

radiation. This might be explained by the assumption that during increased erosion a preferential transport of 

K-rich particles, which are of a certain grain size (further research is needed to determine the exact particle 

size), takes place, while Th is abundant in a different particle size, which is not as easily translocated. 

It seams not sufficient to measure only a single nucleide radiation signature as erosion proxy, but rather a 

ratio of several (in this case K/eTh) or even an entire spectrum, which has to be proven in further studies. 

 

Outlook 
As the results indicate a certain potential of radiometric measurements as erosion proxies, in a next step 

interpolation maps of the gamma-ray signatures, GT data, as well as topsoil thickness and inclination will be 

created (using GeoSoft and/or ArcGis 9.2). These maps will be laid over each other and their fitting will be 

calculated. If the goodness of the fitting is significant, such gamma-ray interpolation maps can be used to 

pinpoint erosion hot spots on field scale in the given environment (petrography) and give information about 

the state of soil degradation. The final step of this study will be the upscaling to watershed level. 
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Abstract 
Diffuse reflectance MIR (mid-infrared) spectroscopy when combined with PLS (partial lest squares) 

statistical analyses can be used to quantify various soil chemical properties.  Of particular interest is the 

application of MIR/PLS analysis to provide a rapid and cost-effective methodology for predicting soil 

organic carbon content and its allocation to component fractions for use in soil carbon scenario modelling.  

The technique applies a beam of approximately 3.14 mm
2
 (2 mm diameter circle) to the surface of a 

powdered soil sample to define chemical composition.  Given the small area sampled, soil sample 

homogeneity and particle size become important issues to examine when interpreting the spectral results 

obtained.  MIR analysis was completed on three different soils with variable texture that had been ground for 

durations ranging from 0 – 180s.  Four aliquots of four replicate samples prepared for each soil by grinding 

time combination were analysed.  Principal components analysis (PCA) was applied to the acquired MIR 

spectra to define to spectral variability and PLS analysis of the spectra was used to quantify the variability in 

predicted values for soil carbon and carbon fraction contents.  PCA provided an excellent means of assessing 

the impact of grinding on the spectral homogeneity for each of the soils examined.  The sandy soil required 

significantly more grinding time to reduce the variability of acquired MIR spectra.  However the variability 

in predicted organic carbon and carbon fraction contents stabilised at shorter grinding times.   

 

Key Words 
Soil carbon, mid-infrared spectroscopy, principal components analysis, partial least squares analysis. 

 

Introduction 
Soil carbon accounts for a significant component of terrestrial carbon.  Much interest exists in defining 

agricultural management practices that have the potential to capture and retain soil organic carbon (SOC) and 

thus mitigate anthropogenic greenhouse gas emissions.  Management effects on SOC can be quantified 

through repeated temporal measurements; however, changes in SOC are slow and often require >10 years to 

become statistically significant.  In the absence of archived soil samples, estimates of the impact of 

management on SOC can obtained through the application of calibrated computer simulation models.  

In Australia, a variant of the RothC model has been calibrated for use in predicting management impacts on 

SOC (Skjemstad et al. 2004).  In addition to calibrating the dynamics of total SOC, Skjemstad et al. (2004) 

also showed that measurable fractions of SOC could be substituted for the conceptual carbon pools originally 

defined within the RothC model.  As a result estimates of management impacts can be obtained by 

measuring the current SOC content and its allocation to a set of measurable fractions.  Determining the 

allocation of SOC to these measurable fractions is time consuming and expensive.  Development of an 

accurate, rapid and cost-effective methodology to estimate the allocation of SOC to these fractions is 

required.  Diffuse reflectance mid-infrared spectroscopy (MIR) coupled with a partial least squares (PLS) 

statistical analysis has been shown to offer such potential (Janik et al. 2007).  The successful application of 

this MIR/PLS technique to predict carbon fractions requires the use of homogenised fine powdered samples 

given that only a 3.14 mm
2
 area (2 mm diameter circle) of the surface of sample is analysed.  Large soil 

particles (>0.5 mm) and in homogeneity can result in acquisition of results that are not representative of the 

entire sample, but instead are biased towards specific components.  In this study, the influence of grinding 

time during sample preparation on the variability of MIR spectra acquired for a sand, loam and clay and 

subsequent predictions of the contents of SOC and carbon fractions was quantified. 

 

Methods 
Three soils (a sand from WA, a fine sandy loam from SA and a clay from SA) were dried overnight at 60°C 

(approximately 16 hours).  The dried samples were ground in a Restch MM400 grinding mill set at 24 Hz.  

Approximately 10 g of soil was placed into a 35 ml milling cup lined with zirconium oxide and containing a 

15 mm zirconium oxide milling ball.  Four replicate samples of each soil were ground for durations ranging 
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from 0 s through to 180 s.  For each of the four replicates, four separate MIR spectra were collected using a 

different aliquot of the ground sample giving.  As a result, a total of 16 MIR spectra were collected for each 

combination of soil and grinding duration.  All MIR spectra were acquired using a Nicolet 6700 FTIR 

spectrometer system fitted with Pike AutoDiff-Automated diffuse reflectance system.  Spectra were acquired 

over 8000 – 400 cm
-1

; however, in the subsequent analyses the spectra were truncated to 6000 – 1030 cm
-1

 

and baseline corrected using a baseline offset transformation in which the lowest point of each spectrum is 

subtracted from all other spectral values.  All transformations and subsequent analyses were completed using 

Unscrambler 9.8.  Principal components analysis with full cross validation was used to assess the influence 

of grinding time on the homogeneity of the acquired spectra.  A partial least squares analysis followed by 

prediction was used to define the influence of grinding duration on the prediction of SOC content and its 

allocation to fractions. 

 

Results 
The diffuse reflectance MIR spectra acquired for all 384 samples (soil type x grinding time x grinding rep x 

analysis rep = 3 x 8 x 4 x 4) are presented in Figure 5. 
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Figure 5.  Diffuse reflectance MIR spectra acquired for all soil samples. 

 

Application of principal component analysis of the spectra showed that 99% of the spectral variation could 

be explained using 4 principal components (Table 2).  For all three soils the variability in acquired spectra 

decreased with increasing grinding duration, with the influence of grinding being more pronounced for the 

sandy soil than either of the other two soils (Figure 6).  Little change in spectral variation occurred between 

150 and 180 s of grinding.  As a result, and to err on the conservative side, 180 s of grinding on the Restch 

MM400 grinding mill used to prepare the samples for MIR analysis.   

 

To assess the impact of grinding on MIR prediction of total carbon and carbon fractions, these variables were 

predicted from the acquired MIR spectra using a previously derived PLS calibration (Janik et al. 2007).  

Figure 7 presents the predicted values obtained for total organic carbon (TOC), particulate organic carbon 

(POC) and the resistant charcoal fraction.  As for the PCA analysis, the WA soil required a longer grinding 

duration to stabilise the predicted values.  To ensure representative MIR/PLS predicted values, a grinding 

duration of >120 s was required for some samples.   

 
Table 2. Percentage of spectral variance explained by the addition of each principal component to the overal 

model. 

PC Percentage of  spectral variance explained 

PC1 70.7 

PC2 89.6 

PC3 98.2 

PC4 99.1 
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Figure 6.  Principal component analysis of the impact of grinding time on variance in spectra for (a) a sand, (b) a 

fine sandy loam and (c) a clay.   
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Figure 7.  MIR/PLS predicted contents of (a) total organic carbon (TOC), (b) particulate organic carbon (POC), 

and (c) charcoal carbon as a function of grinding time. 

 

Conclusions 
The use of MIR spectra coupled to PCA and PLS analyses, provided an excellent methodology for defining 

the sample grinding time required to minimise MIR spectral variability and predictions of the contents of 

SOC and its component fractions.  The response of the different soils to grinding duration varied, with the 

sandy soil requiring the longest times.  Exposing the other soils to longer grinding durations did not 

adversely affect the MIR spectra or SOC predictions.  Therefore when setting up a standard grinding 

protocol to be applied across many different samples, a duration of 180 s has been selected. 
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Abstract 
The research presented in this paper attempts to develop a more realistic model using multi-layer perceptron 

(MLP) and Adaptive neuro-fuzzy inference system (ANFIS) instead of traditional models like multiple linear 

regression (MLR) for predicting of infiltration rate and deep percolation. Soil samples were collected from 

different horizons of profiles located in the Gorgan Province, North of Iran. Measured soil variables included 

texture, organic carbon, water saturation percentage, bulk density, infiltration rate and deep percolation. Then, 

MLR, ANFIS and ANN models were employed to develop a pedotransfer function for predicting soil 

parameters using easily measurable characteristics of clay, silt, SP, Bd and organic carbon. The performance 

of models was evaluated using RMSE. Results showed that the neuro-fuzzy model gives better estimation 

than the other techniques for all characteristics. After neuro-fuzzy model, artificial neural network had better 

accuracy than multivariate regression.   

 

Key Words 
Infiltration rate, deep percolation, pedotransfer function. 

 

Introduction 
In the recent years, the development of prediction methods that use cheap secondary information to spatially 

extend sparse and expensive soil measurements has been a sharpening focus of research (Bishop and 

McBratney 2001). Several attempts have been made to estimate indirectly soil properties from more easily 

measurable and more readily available soil properties such as particle size distribution (sand, silt and clay 

content), organic matter or organic carbon content, bulk density, porosity, etc. Such relationships are referred 

to as pedo-transfer functions (PTFs) (Mermoud and Xu 2006). 

 

A recent approach to model PTFs is the use of artificial neural networks (ANNs) (Schaap et al. 1998) ANFIS 

(Wieland and Wilfried Mirschel 2008). ANN offers a fundamentally different approach for modeling soil 

behavior. ANN is an oversimplified simulation of the human brain and composed of simple processing units 

referred to as neurons. It is able to learn and generalize from experimental data even if they are noisy and 

imperfect. This ability allows this computational system to learn constitutive relationships of materials 

directly from the result of experiments. Unlike conventional models, it needs no prior knowledge, or any 

constants and/or assumptions about the deformation characteristics of the geomaterials. Other powerful 

attributes of ANN models are their flexibility and adaptivity, which play an important role in material 

modeling. When a new set of experimental results cannot be reproduced by conventional models, a new 

constitutive model or a set of new constitutive equations needs to be developed. However, trained ANN 

models can be further trained with the new data set to gain the required additional information needed to 

reproduce the new experimental results. These features ascertain the ANN model to be an objective model 

that can truly represent natural neural connections among variables, rather than a subjective model, which 

assumes variables obeying a set of predefined relations (Banimahd et al. 2005). In brief, a neural network 

consists of an input, a hidden, and an output layer all containing “nodes”. The number of nodes in input (e.g. 

soil bulk density, soil particle size data and etc) and output (different soil properties) layers corresponds to the 

number of input and output variables of the model (Manyame et al. 2007). A type of ANN known as 

multilayer perceptron (MLP), which uses a back-propagation training algorithm, is usually used for 

generating PTFs (Schaap et al. 1998; Minasny et al. 1999; Minasny and McBratney 2002; Amini et al. 2005). 

This network uses neurons whose output is a function of a weighted sum of the inputs. 

 

Since Zadeh (1965) proposed the fuzzy logic approach to describe complicated systems, it has become 

popular and been successfully used in various engineering problems, especially on control processes (Barreto-

Neto and Filho 2008). Ralf Wieland and Wilfried Mirschel (2008) a feed forward neural network (NN), a 

radial basis function network (RBF) and a trained fuzzy algorithm compared for regional yield estimation of 

agricultural crops (winter rye, winter barley).  
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Despite progress made in PTF development in general, little evaluation of PTFs has been done for the soils of 

humid regions of northern Iran (Golestan Province). Hence the present study was carried out with objective to 

comparison the efficiency of ANN, ANFIS and MLR for estimation of some soil hydraulic properties using 

some easily measurable soil parameters. 

 

Materials and methods 
Data collection and soil sample analysis 

Soil samples were collected from different horizons soil profiles located in the Gorgan Province, North of 

Iran. Measured soil factors included texture, Organic carbon, infiltration rate and deep percolation. The clod 

method was used to determine bulk density (Saprks et al. 1996).  

 

Methods to fit PTFs 

Multivariate regression 

The most common method used in estimation PTFs is to employ multiple linear regressions (Minasny and 

McBratney 2002). For example: 

....321 +++= cXbXaXY  

Where Y is depended variable, Xn is in depended variable and a,b, …. are coefficients.  

 

Artificial Neural Network 

ANN is a popular neural network which known as the backpropagation algorithm introduced by Karaca and 

and Ozkaya (2006). In this study, the training process was performed by the commercial package MATLAB, 

which includes a number of training algorithms including the back propagation training algorithm. This is a 

gradient descent algorithm that has been used successfully and extensively in training feed forward neural 

networks. 

 

Adaptive neuro-fuzzy inference system (ANFIS) 

The ANFIS is a multilayer feed-forward network uses ANN learning algorithms and fuzzy reasoning to 

characterize an input space to an output space. It has been shown to be powerful in modeling numerous  

processes such as wind speed time series and real-time reservoir operation (Mahmut Firat and Mahmud 

Gungor 2007). 

 

Evaluation criteria 

We used root mean square error (RMSE) to comparison of the efficiency of models that expressed as: 
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sZ  is observed value, oZ   is predicted value, n  is number of samples. 

 

Result and Discussion 
Data summary of test and train are presented in Table 1 Data subdivided in two sets: 20% of the data for 

testing and the remaining 80% of the data were used for training. 

 
Table 1.  Statistics of the training and test data sets of Infiltration Rate and Deep percolation 

  Clay Silt BD SP OC I P 

Min 15.00 19.00 1.30 38.30 0.34 0.25 0.09 

Max 54.00 73.00 1.65 84.00 8.80 6.50 8.70 

Mean 34.30 43.11 1.48 51.99 2.05 1.51 2.55 
Training set 

Std 10.92 12.37 0.09 12.40 1.89 1.89 2.87 

Min 26.00 30.00 1.30 60.00 1.22 0.40 0.40 

Max 47.00 46.00 1.55 72.60 10.25 4.70 5.50 

Mean 33.60 36.14 1.39 67.80 5.26 1.75 3.11 
Test set 

Std 7.82 5.46 0.08 4.31 3.38 1.58 2.01 
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Some soil parameters including: clay, silt, Bulk density, water saturation percentage and organic carbon were 

input data for prediction of Infiltration rate and Deep percolation. Firs step was to evaluate accuracy of ANN 

for predicting known data. So we modeled the ANN for predicting of training data. Results revealed that high 

accuracy of ANN. After confirming of performances of ANN, different neurons were examined for achieving 

the best neuron for predicting of soil properties. In this stage we used RMSE criteria for determine the best 

model. Results showed that for infiltration rate five neurons and for deep percolation two neurons had the 

lowest RMSE.  

 

Then, MLR was computed for soil training data set by MINITAB software. These equations were expressed 

as: 

I = 12.7 - 0.188 Clay - 0.053 silt - 10.3 BD + 0.187 SP - 0.199 OC                                 (1) 

P = 37.3 - 0.289 Clay - 0.176 silt - 17.4 BD + 0.130 SP - 0.488 OC                                (2) 

 

After determining of these equations, performance of MLR was developed for test data set. Results showed 

that ANN had better performance in predicting all soil properties than MLR which is in line with the work 

done by Amini et al. 2005, Tamari and Wösten (1996), Minasny and McBratney (2002) and Schaap et al. 

(1998). 

 

After MLR and ANN, ANFIS model was computed. There are several fuzzy inference engines which can be 

utilized for this purpose, which Sugeno and Mamdani are of the most important ones. At this stage, we 

compute neuro-fuzzy model for predicting mentioned parameters. The best structure of Neuro-fuzzy model 

obtained according to less RMSE. Result of ANFIS, ANN and MR showed in Table 2. As this table 

demonstrates ANFIS had the highest accurate for predicting the both parameters.  
 

Table 2. The results of linear regression and neural network-based pedo-transfer functions. 

Models Soil parameters RMSE 

IR 9.44 
Linear regression 

DP 7.92 

IR 7.24 
ANN 

DP 6.54 

IR 5.78 
ANFIS 

DP 5.55 

 

Conclusion 
At present research, we compare applicability and accuracy of three models for prediction of IR and DP. 

Results revealed that the ANFIS model gives better estimates than the other techniques. After this model, 

ANN had better accuracy than MLR for prediction of mentioned parameters. It is founded that ANFIS and 

ANNs had high accuracy for prediction of mentioned parameters but the application of artificial neural 

networks and fuzzy systems to real problems should be done with care.  
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Abstract 
Prior stream channels occupy 15% of the clay alluvial fields used for irrigated cotton production in the lower 

Gwydir Valley in north-western NSW. They act as significant hydrological features offering pathways for 

deep draining water to interact with buried palaeochannels. We need to map the connectivity and spatial 

extent of these formations to improve the scientific understanding of the associated hydrological processes in 

this region. In this paper we explore this by first measuring the apparent electrical conductivity (σa) of the 

soil with a DUALEM-421. Subsequently, we employ 1-dimensional (1-D) inversion algorithms with 2-

dimensional (2-D) smoothness constraints to predict the true electrical conductivity (σ) using DUALEM-2d 

(partial solution) and DUALEM-2d-Full (full solution). The σ models obtained are compared with soil data 

(including particle size fractions, soil texture, EC1:5 and CEC) collected across the field. All σ models 

generally reflect the soil properties which characterise the physiographic units of a prior stream channel and 

the clay alluvial plain. However, the relationship between the measured soil properties and estimated σ is 

weak and further research is needed to achieve better relationships. 

 

Key Words 
Prior stream channels, DUALEM-421, electromagnetic (EM) induction, inversion. 

 

Introduction 
Prior stream channels occupy 15 % of the clay alluvial landscapes that are used extensively for irrigated 

cotton production in the lower Gwydir Valley in north-western New South Wales, Australia (Needham 

1991). In order to improve the scientific understanding of the hydrological processes across this landscape, 

especially where the management of water is crucial and climatic models and trends suggest that rainfall is in 

decline (Kothavala 1999), there is a need for better representation and ability to map the connectivity and 

spatial extent of prior stream channels and palaeochannels.  Electromagnetic (EM) induction is a cost 

effective and proximal geophysical method that has successfully been employed in measuring both the areal 

(Triantafilis et al. 2003) and stratigraphic (Vervoort and Annen 2006) distribution of apparent electrical 

conductivity (σa – mS/m) of prior stream channels within the current study site. The aim of this study is to 

use σa data collected by a DUALEM-421 to infer the spatial distribution of soil properties and soil particle 

size fractions related to σa across a prior stream channel in an irrigated cotton field in the lower Gwydir 

valley. This is achieved by using two inversion programs, DUALEM-2d and DUALEM-2d-Full, that 

estimates the true electrical conductivity (σ) of the soil at discrete increments.  These programs are modified 

versions of the nonlinear smoothness constrained inversion algorithm described in (Santos 2004) and 

incorporate a damping factor (the Lagrange parameter) that is used to control the balance between the data fit 

and its closeness to the initial model. 

 

Materials and Methods 
The study site is located within Field 11 of Auscott ‘Midkin’, a large irrigated cotton farm situated 

approximately 20 km away from Moree in the lower Gwydir Valley. A large prior stream channel is located 

in Field 11. It is most prominent in the southern end of the field wherein it dissipates as it extends to the 

north.  The DUALEM-421 is an EM instrument which operates at 9.1 kHz and consists of one transmitting 

coil and three pairs of receiving coils spaced 1, 2 and 4 m apart from the transmitting coil. Each coil pair 

consists of a coil with horizontal windings forming a horizontal coplanar (HCP) array and a coil with vertical 

windings forming a perpendicular (PRP) array. Each coil array measures the apparent electrical conductivity 

(σa) of the soil for six different depths of exploration (DOEs) relating to the geometry of the instrument (i.e. 

coil spacing and orientation) and the frequency of operation. The HCP arrays measure the σa (Hcon – mS/m) 

of the soil from 0 to 1.5 m (1mHcon), 0 to 3 m (2mHcon) and 0 to 6 m (4mHcon). The PRP arrays measure 

the σa (Pcon – mS/m) of the soil from 0 to 0.6 m (1mPcon), 0 to 1.2 m (2mPcon), and 0 to 2.4 m (4mPcon).  
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The DUALEM-421 was used for a σa survey across twelve transects within Field 11 which are spaced 24 m 

apart and labeled 16.5 to 22. Of note, transect 21.5 is where soil information is available.  The σa data was 

then passed through two inversion programs called DUALEM-2d (Santos et al. 2009) and DUALEM-2d-

Full (Santos 2009) to obtain an estimate of the true electrical conductivity (σ) of the soil at discrete 

increments within the soil profile.  DUALEM-2d is a partial solution to the inverse problem and DUALEM-2 

d-Full is the full solution. In terrains of large σ such as the clay alluvial plains of the lower Gwydir Valley, 

above a value of approximately 100 mS/m, the relationship between EM instrument response and the σa of 

the soil becomes nonlinear due to operation outside of low induction numbers (McNeill 1980). The full 

solution takes this limitation into account, whereas the partial solution does not.  In order to determine the 

relationship between the inversion results and soil properties, 17 soil cores were collected to a depth of 1.5 m 

and bulked into 0.3 m increments. Each soil sample was analysed for soil particle size fractions by the 

hydrometer method and for other soil properties (i.e. EC1:5, CEC and texture) that may influence σa across a 

prior stream channel and clay alluvial plain. 
 

  
Figure 1.  Spatial distribution of apparent soil 

electrical conductivity (σa - mS/m) along transect 21.5 

measured using a DUALEM-421 in horizontal 

coplanar (Hcon) and perpendicular (Pcon) modes of 

operation, and intercoil spacing of: a) 1m, b) 2m, 

and, c) 4m, and d) altitude (ASL - m). 

Figure 2.  2-dimensional (2-D) contour plots of a) soil 

texture (based on soil texture classes, 

whereby 6 – Clay, 5 – Light Clays, 4 – Clay Loams 

and 3 – Loams); b) clay content; c) electrical 

conductivity of 1 part soil and 5 parts water extract 

(EC1:5 – mS/m), and d) cation exchange capacity 

(CEC – cmol (+)/ kg). 
 

Results and Discussion 
Figure 1 shows the 1mHcon and 1mPcon σa data (Figure 1a), the 2mHcon and 2mPcon σa data (Figure 1b) 

and the 4mHcon and 4mPcon σa data (Figure 1c) from the DUALEM-421, as well as the elevation (Figure 

1d) along transect 21.5. In Figure 1a, it is evident that north of 6759125 the larger 1mHcon σa and 1mPcon σa 

represent the clay alluvial plain. Conversely, south of 6759125 the smaller σa values represent the prior 

stream channel. Given that the DOE of the 1mHcon σa measurement is deeper (0 to 1.5 m) as compared to 

the shallow DOE of the 1mPcon σa (0 to 0.6 m), this suggests that the surficial 0 to 0.6 m of the soil profile 

may be smaller in σ than the subsurface (0.6 to1.2 m). Figure. 1b shows a similar pattern in terms of the 

pattern of σa distribution however, the 2mHcon and 2mPcon σa are approximately 2 times larger than the 

equivalent data from the 1 m coil spacing. This suggests that the σ is larger within the shallow vadose zone 

(1.2 to 3 m). Figure 1c shows that both the 4mHcon and 4mPcon σa are equivalent. Given that the 4mHcon 

and 4mPcon σa are influenced by layers within the soil profile between 0 to 6 m and 0 to 2.4 m, respectively, 

this suggests that between depths of 2.4 to 6 m the σ of the soil may be smaller.  

Figure 2 shows 2-D contour plots of the particle size fractions of clay (Figure 2a), soil texture (based on soil 

texture classes, whereby 6 – Clay, 5 – Light Clays, 4 – Clay Loams and 3 – Loams) (Figure 2b), electrical 

conductivity of 1 part soil and 5 parts water extract (EC1:5 – mS/m) (Figure 2c) and cation exchange capacity  

(CEC – cmol (+)/ kg) (Figure 2d) along transect 21.5. The prior stream channel in the southern end of the 

transect consists of a uniform loam to clay loam texture reflected by a smaller clay content (15 to 35 %) 

compared to the finer textured (uniform clay) soil, large in clay content (> 50 %) of the clay alluvial plain 
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(Figure 2a and b). In addition, the small EC1:5  (i.e. < 0.25 mS/m) of the prior stream channel (Figure 2d) is 

reflected by the coarser texture soil of this soil formation.  Owing to the coarser nature of the sediments here, 

and as shown in Figure 2c, most of the soluble salts within the soil profile that accumulate here due to 

Aeolian processes or cyclical deposition via rainfall have leached out. Conversely, the larger EC1:5  (1.25 to > 

2.25 mS/m) in the central and northern end of the transect corresponding to the clay alluvial plain reflects a 

normal salinity profile due to the accumulation of primary salinity as described previously.  Figure 3 shows 

the 2-D spatial distribution of σ along transect 21.5 that was obtained from DUALEM-2d (Figure 3a) and 

DUALEM-2d-Full (Figure3b). The σ models were obtained using an automatic initial earth model and a 

damping factor of 0.1. The global misfits for the σ models are 8.41 % and 9.05 %, respectively. 

 

 
Figure 3.  2-dimensional (2D) spatial distribution of soil electrical conductivity (σ - mS/m) along transects 

20.5, 21, 21.5 and 22 obtained from σa data and (left) DUALEM-2d data (right) DUALEM -2d-Full. 

 

It is evident that the overall subtle stratigraphic elements of the landscape are well represented by both 

inversion models, with respect to small σ values (< 100 mS/m) corresponding to the prior stream channel and 

conversely, the larger σ values (200 to > 400 mS/m) corresponding to the clay alluvial plain. With respect to 

the clay alluvial plain, the larger σ values are underestimated by the DUALEM-2d partial inversion program 

due to the large σa values that occur within this part of the transect (refer to Figure 1a, b and c). The σ model 

obtained from DUALEM-2d-Full inversion program represents the larger σ values more realistically. The 

stratigraphy of the range of σ values in the prior stream channel presented are likely to reflect the range of 

soil textures that a prior stream channel consists (Stannard and Kelly 1968).  

 

In comparing σ to various soil properties, the Pearson correlation coefficients (r) for the σ (DUALEM-2d) 

versus clay content, EC1:5 and CEC are 0.08, 0.27 and 0.19, respectively. The r values for the σ (DUALEM-

2d-Full) versus clay content, EC1:5 and CEC are 0.08, 0.26 and 0.19, respectively. In the case of the σ models 

obtained from the DUALEM-2d program, the potential for prediction may be limited by the nonlinearity of 

the cumulative function that the algorithm is based upon. DUALEM-2d-Full takes into account the 

nonlinearity problem, however this does not produce better correlations between σ and soil properties. This 

could be attributed to the layer of small σ values that exist in the upper 1 m of soil in all the σ models which 

may reflect the lack of soil moisture in the topsoil at the time of the σa survey. 
 

Conclusion 
The spatial distribution of soil properties within a prior stream channel and clay alluvial plain can be inferred 

from the true electrical conductivity (σ) generated from the inversion of DUALEM-421 σa data collected 

along a single transect located within an irrigated cotton growing field in the lower Gwydir valley. We 

achieved this by inverting the σa data with DUALEM-2d (partial solution) and DUALEM-2d-Full (full 

solution). The larger σ estimates associated with the clay alluvial plains and obtained the full solution are 

found to be more realistic. The σ estimates of the prior stream channel are also more realistically represented 

by the full solution when comparing the pattern σ distribution with the known stratigraphy of the range of 

soil textures present in prior stream channels and clay alluvial plains as described by Stannard and Kelly 
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(1968). The calibration information, specifically the CEC, EC1:5 and soil textural data (indicating a normal 

salinity profile in the clay alluvial plain) from the soil cores generally reflects the distribution of σ along 

transect 21.5. Specifically, small subsurface σ (0 to 200 mS/m) represents the smaller CEC, EC1:5 and coarser 

textures (i.e. sandy loams) of the prior stream channels. Conversely, larger values of σ (> 400 mS/m) 

characterise the finer textured (i.e. medium to heavy clays) and slightly larger EC1:5 of the root zone soil 

properties of the clay alluvial plain. Whist the σ models are able to generally represent the soil types, the 

potential to use σ to predict soil properties is limited. The lack of statistical correlation is attributed to a layer 

of small σ values within the upper 1 m of the soil profile that may be affected by low moisture content in the 

topsoil at the time of the σa survey. Follow up research should be carried out in more favourable conditions 

(i.e. soon after irrigation or heavy rainfall) to determine the influence of soil moisture. 
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Abstract 
This paper summarizes the development of a proximal sensing technique used to predict root density, soil 

carbon (C) and soil nitrogen (N) content from the visible and near-infrared (Vis-NIR) spectral reflectance of 

soil cores. The techniques were evaluated at two sites in permanent pasture on contrasting soils (an 

Allophanic soil and a Fluvial Recent soil) and at two sites within a field of 90-day-old maize silage; 

Kairanga silt loam and fine sandy loam (Recent/Orthic Gley Soils) in Manawatu region, New Zealand. A 

portable field spectrometer with a modified soil probe was used to acquire reflectance spectra (350-2500 nm) 

from horizontal surfaces of soil cores. After scanning, thin soil slices were taken at each depth for root 

density measurement and soil C and nitrogen N. Calibration models developed using partial least squares 

regression (PLSR) between the first derivative of soil reflectance and the reference data were able to 

accurately predict the soil profile root density, and soil C and N concentration for all soils. Predicted root 

densities were not strongly autocorrelated to soil C values, indicating that root density can be predicted 

independently from soil C. This research has identified a potential method for assessing root densities in field 

soils enabling study of their role in soil organic matter synthesis. 

 

Key Words 
Carbon, nitrogen, near infrared, root density, maize, pasture. 

 

Introduction 
Pasture rotations in mixed farming systems have long been known to build soil organic matter (SOM) and 

create desirable soil structural features for seedbed preparation, drainage and aeration. The amount of SOM 

in pastoral soil is closely related to net productivity of roots, which is determined by previous soil and 

pasture management history (Nie et al. 1997) and type and stage of growth of the pasture (Fisher et al. 

2007). The patterns of carbon (C) sequestration in both arable and pasture soils correlate well to plant root 

density and turnover times (Rees et al. 2005). Deeper root systems have the potential to sequester carbon 

(Smith 2004) deeper in the soil profile, where root turnover times can be slower. Organic carbon stored 

deeper in soil can slow the return of CO2 to the atmosphere. Soil organic carbon stored deeper than 0.2 m and 

below 2 m can have residence times of 1000-2000 and 9000-13 000 years, respectively (Follet et al. 2003). 

There are other desirable features of deeper rooting plants. Plants with deeper, denser root systems have the 

potential to increase water use efficiency by optimising the use of subsoil water, and to recapture nitrate that 

would have leached past shallower root systems (Crush et al. 2007; Dunbabin et al. 2003). To exploit these 

opportunities crop cultivars that express deeper and denser rooting characteristics will need to be identified 

and then evaluated in field trials. Current common methods of measuring root density are the profile wall 

(Böhm 1979) and soil corer methods (Escamilla et al. 1991). Both require separation of roots and soil, which 

is a tiresome procedure, followed by root length measurement by the line intersect method (Newman 1966). 

Recently (Kusumo et al. 2009) used Vis-NIR reflectance spectroscopy to successfully predict, ryegrass root 

density in a glasshouse experiment. Sophisticated software (multivariate analysis) has allowed, reflectance 

spectra from soil to be calibrated against measured soil properties and the calibrations used to simultaneously 

predict several soil properties, such as total C, organic C (e.g. Chang and Laird 2002, Kusumo et al. 2008), 

total N, CEC and moisture (Malley and Martin 2003). Plants roots contribute directly to the reflectance 

bands associated with water and organic matter but roots as an intrusive property of soils mask other 

chromophores, such as, hydrous iron and aluminium oxides, and clays In this paper we summarize our recent 

research into improving the ability to predict root density in pasture and cropped soils from Vis-NIR spectral 

reflectance acquired from soil cores in the field.  

 

Methods 

Sites, soils and vegetation 
The pasture root density assessment was undertaken at two permanent pasture sites (23.5 km apart): the first 



© 2010 19th World Congress of Soil Science, Soil Solutions for a Changing World 

1 – 6 August 2010, Brisbane, Australia.  Published on DVD. 
68 

on Ramiha silt loam (Allophanic soil, Andic Dystrochrept derived from loess and andesitic ash) and the 

second on Manawatu fine sandy loam (Fluvial Recent soil, Dystric Fluventic Eutrochrept derived from 

greywacke alluvium) in the Manawatu region, New Zealand (Hewitt 1998). The permanent ryegrass (Lolium 

perenne L) and white clover (Trifolium repens L) dominant pastures at both sites had been present for more 

than 20 years. The maize root density assessment was conducted on the day of harvest of a 90 day old maize 

crop. Two sites on the Kairanga soil series (Recent/Orthic Gley Soils) were chosen in the same field. At one 

site, the soil was dominantly silt loam and at the second site fine sandy loam in texture. 

 

Acquiring spectral reflectance 
At the pasture site a total of 18 soil cores, 10 m apart from each other, were collected from each site and cut 

into three depths (at 15, 30 and 60 mm), providing 54 samples at each site and a total of 108 soil samples. 

Reflectance spectra (350-2500 nm) were acquired in situ from the freshly cut surfaces using a purpose built 

soil probe attached by fibre optic cable to a field spectroradiometer (ASD FieldSpecPro, Boulder, Colorado, 

USA). A 3-mm soil slice (slice A) was collected at each surface, put in a sealed plastic bag and stored as 

field moist at 4
o 
C for no more than three days before root densities were measured using the wet sieve 

method (Kusumo et al. 2009). Root density was expressed as mg dry root g
-1

 dry soil. A further 3-mm soil 

slice (slice B) was collected; part was used for determining dry soil weight and soil moisture content (oven 

dry at 105
o 
C) and part was air dried and analysed for total C and N using a Leco FP-2000 CNS analyser 

(LECO Corp., St Joseph, MI, USA). 

 

At each of the two maize sites, three replicate soil cores were taken at 0, 15 and 30 cm distance from the 

maize stem towards the centre of the 60 cm row. The distance between each replicate was 40 cm. A soil core 

was sectioned at 5 depths (7.5, 15, 30, 45, and 60 cm) and at each depth the soil reflectance spectra was 

acquired in situ as describe above. A 1.5 cm soil slice (slice A) was taken above the cut surface to obtain root 

mass reference data (using wet sieve laboratory root measurement). Another 1.5 cm soil slice (slice B) was 

taken air-dried and analysed for total soil C and N determinations and water content measurement.  

 

Standing biomass 

On the day of coring the pasture biomass cover was estimated to be approximately 1500kgDM/ha. Biomass 

data of maize stem and cob were collected one day before silage harvesting. Stem and cob dry matter values 

were obtained by drying them at 60
o
C for 12 days. 

 

Spectral data processing and statistical analysis 

The spectral data were pre-processed (for details see Kusumo et al. 2009) and first derivatives of 5-nm 

spaced data calculated using SpectraProc V 1.1 software (Hueni and Tuohy 2006). The first derivative data 

were imported to Minitab 14 (MINITAB Inc. 2003) for principal component analysis (PCA) and partial least 

squares regression (PLSR) analysis. Prior to (PLSR) analysis, a PCA was conducted on the first derivative of 

the spectral data. A score plot of the first two components (PC1 and PC2) of the PCA analysis was used to 

select data for calibration and validation sets 

 

Calibration models were developed by using PLSR to fit the reference data (root density, soil C and N) to 

pre-processed spectral data. The accuracy of the PLSR calibration models was tested internally by using a 

leave-one-out cross-validation procedure and when sample numbers permitted, externally using a separate 

validation sample set. 

 

The best prediction models were shown by the smallest standard deviation of the difference between the 

measured and the predicted soil property values (RMSE, calculated from cross-validation is termed 

RMSECV and from separate validation is termed RMSEP) and the largest ratio of prediction to deviation 

(RPD), the largest ratio of the range of measured values of soil properties to the RMSE (RER) , and the 

largest r
2 
(for more detailed explanation see Kusumo et al. 2009) 

 

Results 
Pasture soils 

Mean root density decreased significantly with depth from 12.4 and 22.5 mg/g soil
 
at 15 mm to 3.2 to 2.6 

mg/g soil
  
at 60 mm, both in the Ramiha and the Manawatu soil respectively. If the average amount of root 

mass in the 0 – 60 mm depth is expressed per hectare, the total root dry mass was 3642 and 9353 kg DM/ ha 

in the Ramiha (Andic Dystrochrept) and the Manawatu soil (Dystric Fluventic Eutrochrept), respectively, 
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consistent with the result reported by Nie et al. (1997). 

 

Soil C also decreased with depth from 10.2 and 4.5 % at 15 mm to 6.2 and 2.1 % at 60 mm, in the Ramiha 

and Manawatu soil respectively (Table 1). Interestingly, Ramiha soil with smaller root densities contained 

larger amounts of soil C. This is probably because SOM decomposition was inhibited by complexation with 

the amorphous clay mineral allophane (Boudot et al. 1988) which is abundant in this soil (Theng et al. 1986). 

 

The PLSR calibration models of first derivative spectra and reference data for both soils were strong (r
2
 > 

0.99) and produced accurate predictions of root density in the validation set (Figure 1). Similarly soil carbon 

was accurately predicted in the Ramiha (r
2
 = 0.86, RMSEC = 0.33, RPD = 2.73 and RER = 12.06) and 

Manawatu (r
2
 = 0.86, RMSEC = 0.22,RPD = 2.64 and RER = 10.41). In the Ramiha soil root density and 

soil carbon were not autocorrelated (r
2
 = 0.02) but in the Manawatu soils they were (r

2
 = 0.73). 
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Figure 1.  Relationships between root density measured by wet sieving and predicted from soil spectral 

reflectance created by separate PLSR calibration and validation data sets (a & b) for pasture soils, and 

measured (solid line) and predicted (dashed line) maize root density (c) and  soil carbon (d) with depth for 

both soil textures 
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Maize soils 

Root density (Figure 1c) was higher in the top soil (15 cm depth) and decreased with depth and decreased 

with distance from the plant stem (in the silt loam soil) but in the fine sandy loam, highest root densities were 

found 15 cm distance from the plant stem (data not shown) . Soil carbon also decreased with depth (Figure 

1d). Both root density and soil carbon were accurately predicted from the PLSR calibration model developed 

using the first derivative of soil spectral reflectance (Figure 1 c & d). Root density could be predicted 

independently of soil carbon (data not shown).  
 

Conclusion 
Our results show that Vis-NIR spectroscopy can be used for prediction of pasture and maize root density and 

soil carbon in the field. Accurate PLSR calibration models can be developed from a small calibration set of 

field-acquired spectra from a soil slice with known reference root density and soil carbon data. The 

calibration models can be used to predict the carbon and root densities in a larger population of acquired 

spectral data. This approach can reduce the number of samples that must be measured for root density and 

soil carbon, especially when dealing with large sample sets (e.g. for mapping purposes). 
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Abstract 
The purpose of our study is to evaluate the appropriateness of an ICP–method for the determination of total 

phosphorus content in soils and plants after complete decomposition by acid mixtures. Three certified soil 

samples corresponding to two main soil types in Bulgaria and Polish reference material CTA-VTL-2 

(Virginia tobacco leaves) were used in the study. It was established that ICP is a fast and correct method for 

phosphorus determination in plant materials. We have to use a standard supplement method in order to 

obtain correct results for soil samples. 

 

Key Words 
Phosphorous determination, ICP, soils, plants 

 

Introduction 
The correct determination of phosphorus content in soils and plants is extremely important for agricultural 

science and practice. Phosphorus participates in a number of processes determining the growth, development 

and the productivity of the plant: formation of cell nucleus and cell multiplication, synthesis of lipids and 

specific proteins, transmission of hereditary properties, breathing and photosynthesis, energy transmission 

from richer to poorer energetic compounds, etc. It is very important to know the phosphorus status of soils to 

determine the necessity for phosphorus fertilizer use.  Phosphorus is known to be unique for its sensitivity 

and stability as a human activity indicator. Its content in soil represents a great interest to archaeologists, 

giving them information on type and intensity of human activity. Total phosphorus measurement gives 

quantitative results in contrast to mobile phosphorus and represents the best indicator for variation caused by 

human activity. 

 

During the last year soil and plant laboratories have moved from colorimetry to inductively coupled plasma 

(ICP) spectrometry to quantify phosphorous in soil and plants (Sicoria et al. 2005). The main reason is the 

increasing critical attitude to the colorimetric measurement due to the significant interference problems upon 

Р determination in soils and plants, as well as the advantages of ICP–method related to the fast measurement 

and the opportunity to simultaneously determine the main part of the macro-and microelements, contained in 

soils and plants. Its adaptation and priority for soil status evaluation is not trouble-free due to controversial 

results when compared to the colorimetric method. We have expanded the studies in this sphere to obtain 

more experimental results related to sample preparation methods and soil diversity. Several profound studies 

comparing both methods for determination of total and mobile phosphorus in various soils are known. Upon 

the test falling within the scope of North American Proficiency Testing (NAPT) program conducted in 2001 

and 2002, 18 laboratories used the spectrophotometric method and 34 laboratories used the ICP–method 

(Sicoria et al. 2005). In 40 samples ICP values for phosphorus, extracted by Mehlih 3 (Mehlih 1984) 

exceeded the values determined by means of spectrophotometric method by 7.4 mg/kg on average. Thus the 

ICP–method is not recommended for determination of standards for phosphorus fertilizers. Pitman et al. 

(2005) compared phosphorus determined by ICP and spectrophotometric methods in Mehlich 3 extract of 

6400 soil samples and established a significant correlation between both methods at Р concentrations 

exceeding 60 mg/kg, the P determined by the spectrophotometric method was 80–90% of the phosphorus 

determined by ICP–method. Sicoria et al. (2005) studied 1536 soils having various origins and found 

significant differences between both methods. Values obtained by ICP are higher in most cases, but a few 

samples showed the opposite result. According to Piersynski et al. (2005) the ICP results for phosphorus 

contained in aqueous extracts of fertilizers were up to 15 % lower than those determined by the 

spectrophotometric method. The reasons for these results are not clarified yet. 

 

A summary of the results published in the scientific literature showed that the ICP–method gave higher 

results for total phosphorus content in soils in comparison to the spectrophotometric method. However, the 

exceptions and controversial results are significant, so that we may not come to an explicit conclusion. We 

must bear in mind that hydrofluoric acid was not used for dissolution of the analysed samples in any of the 
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studies, i.e. the soil silicate matrix did not enter solution. It is necessary to simultaneously determine the total 

content of phosphorus and of the other macro-and microelements for the purpose of numerous studies. The 

purpose of our study is to evaluate ICP–method appropriateness upon solving the present problem. 

 

Materials and methods 
Type of samples 

Three certified soil samples corresponding to two main soil types in Bulgaria were used: (i) Light Alluvial-

deluvial Meadow Soil PS-1, SООМЕТ № 0001 – 1999 BG, SOD  № 310
a
-98; (ii) Light Meadow 

Cinnamonic Soil PS-2, SООМЕТ № 0002 - 1999 BG, SOD №311
a
-98 and (iii) Light Alluvial-deluvial 

Meadow Soil PS-3, SООМЕТ № 0003 - 1999 BG, SOD № 312
a
-98. The total content of phosphorous in the 

certified samples is presented in Table 1.  

 
Table 1. Phosphorous content in the certified soil samples. XCRM is the certified value, UCRM, % - the uncertainty 

of the certified value and σσσσCRM  - the standard deviation from of the certified value. 

Soil XCRM, % UCRM, % σCRM, % 

PS-1 0.197 0.014 0.003 

PS-2 0.150 0.010 0.006 

PS-3 0.205 0.013 0.007 

 

A Polish reference material CTA-VTL-2 (Virginia tobacco leaves), containing 2204 ± 78 µg/mg 

phosphorous was used in the study. 

 

Digestion method 

A main consideration in the selection of  digestion methods was the possibility for simultaneous 

determination of the most important macro- and micronutrients in the soils and plants by a single digestion 

procedure. Our preliminary studies showed that the most appropriate digestion methods are ISO 14869-1 

(2001) (decomposition by acid mixture of HF + HNO3 + HC1O4) for soil samples and EPA METHOD 

3051(decomposition by acid mixture of HNO3 + H2O2 + HF) and dry ashing at 500
o
C for plant materials. 

 

Phosphorus determination 

An ICP-AES spectrometer Spectroflame MODULA (Spectro Analytical Instruments, Kleve, Germany), 

equipped with two monohromators: (i) spectral range 160 – 460 nm with nitrogen purged optics and (ii) 

spectral range 240 – 790 nm with air purged optics, was used. Background correction was performed. We 

used the internal standard method by adding scandium to the samples and standard solutions. The calibration 

was performed using three standard solutions in 2 % v/v HNO3. A commercial multielement standard 

solution with concentration 100 µg/l was used as a stock solution. The calibration standard solutions had the 

following concentrations: 0,0; 5.0 and 10.0 ppm. 

With the aim to define the magnitude of the difference between ICP and colorimetric P in the soils and plant 

material investigated, we analysed the same solutions, obtained by the digestion methods described above, 

following the colorimetric procedure for P determination, described by Gorbanov et al. (1990) 

 

Statistical analysis 

For evaluation of the correctness of the results for phosphorous three generally accepted criteria were used as 

follows: (i) D = X – XCRM, where X is the measured value and XCRM is the certified value. When D is within 

the limits of ± 2σ, where σ is the standard deviation from the certified value, the result is considered to be 

good; when it is -3σ ≤ D ≤ 3σ   - satisfactory, and beyond these limits the result is unsatisfactory ; (ii) D % = 

D/ XCRM .100 – percentage difference. When the values of D % are in the limits ± 200σ / ХCRM  the result is 

considered to be good, when the value is within the limits ± 200σ/ ХCRM and ± 300σ/ ХCRM - satisfactory, and 

when it is out of the limits ± 300σ/ХCRM  the result is unsatisfactory; (iii) Z = X – XCRM / σ . When Z ≤ 2 the 

result is considered to be good, when 2 ≤ Z ≤ 3 - satisfactory, when Z > 3 - unsatisfactory. We have used the 

R criterion showing the extent of extraction of the element in percents from the certified value. When the 

measured value X is within the borders of ХCRM ± UCRM where UCRM is the indefiniteness of the certified 

value, we accept the extent of extraction to be 100%. In all remaining cases the extent of extraction is equal 

to X/XCRM.100. 
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Results 
Soil samples 

The results obtained by ICP and colorimetric analyses of phosphorous in soil samples are presented in Table 2. 

 
Table2.  Effectiveness of ICP and colorimetric determination of phosphorous in soil samples. 

Soil X, % Ux, % σx, % D D, % Z R 

PS-1, ICP 0.156 0.010 0.001 -0.041 -20.81 -18.33 79.19 

PS-1, 

Colorimetric 
0.206 0.014 0.003 0.009* 4.57* 3.00* 100 

PS-2, ICP 0.121 0.006 0.001 -0.029 -19.33 -10.50 80.67 

PS-2, 

Colorimetric 
0.151 0.011 0.007 0.001** 0.67** 0.17** 100 

PS-3, ICP 0.159 0.010 0.001 -0.046 -22.4 -22.67 63.60 

PS-3, 

Colorimetric 
0.202 0.014 0.006 -0.003** -1.46** -1.00** 98.5 

* - “satisfactory” results; ** - “good” results 

 

As seen from the results, presented in the table 2, all values related to the phosphorus content, determined by 

ICP, are significantly lower. This contradicts most of the results published in scientific literature. It is well 

known that the calibration line method (CLM) is the most commonly used method for quantitative 

measurements by ICP. It is constructed according to standard solutions prepared by appropriate dilution of 

mono- or multi-standard with one or two percent solution of the respective acid used for sample 

mineralization. Some multiplicative interferences resulting from the matrix may be compensated by the 

standard supplement method (SSM). For that purpose two or three supplements of the standard solution shall 

be added to aliquot parts of the analyzed sample at concentrations which are close to the supposed 

concentration of the element in the sample. A supplement shall not be added to one of the aliquot parts. The 

intensity of samples with or without supplements shall be taken into account and the obtained points shall be 

used for first degree polynomial calculation by the method of the smallest radicals. The point where this line 

crosses the horizontal coordinate CSSM according to the module corresponds to element concentration in the 

sample calculated by the standard supplement method. In case of matrix interferences the line according to 

the standard supplement method has smaller declination than the calibration line and, respectively, CSSM is 

greater than СКLM. Four points are used for calibration line construction – one empty sample and three having 

concentrations of 4,0 8,0 and 12,0 mg/l. Three points were used for each of the studied samples - one without 

supplement and the other two with supplements of 4,0 and 8,0 mg/l, respectively, for construction of the line 

according to the standard supplement method. Mathematical statistics for checking the hypothesis related to 

the parallelism of two regression equations was used for checking the parallelism of the constructed lines. 

Fig. 1 demonstrates phosphorous determination by SSM method on the base of PS-3 sample.  
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The results obtained for all certified samples are presented in Table 3. 

 
Table 3. Phosphorus content in certified samples determined by CLM and SSM. СCLM – solution concentration 

by CLM; С SSM - solution concentration by SSM; СР. CLM % – P content by CLM; СР.SSM % - P content by SSM; 

▲ - difference between both methods in %. 

Soil XCRM, % С CLM СР. CLM, % С SSM СР.SSM, % ▲, % 

ПС-1 

ПС-2 

ПС-3 

0.197 

0.150 

0.205 

3.4 

2.6 

3.4 

0.156 

0.120 
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4.2 
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23.0 
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Figure 1.  Phosphorous determination in PS-

1 by standard supplement method (SSM). 
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As seen from the data, presented in table 3 the phosphorus content determined by the standard supplement 

method in the three samples significantly exceeds the phosphorus content determined by the calibration line 

method, and the extraction degree is 100 % in all three cases. Although the matrix interference for all three 

studied samples was close, the introduction of a common correction factor for the results obtained by the 

calibration line method required accumulation of more experimental results and their mathematical 

processing. 

 

Plant materials 

The results obtained for CTA-VTL-2 (Virginia tobacco leaves), digested by EPA method 3052 and dry 

ashing are presented in Table 4. 

 
Table 4.  Effectiveness of ICP and colorimetric determination of phosphorous content in tobacco leaves. XCRM = 

2204 ppm, σσσσCRM = 78 ppm. 

Method X , ppm σx, ppm D D, % Z R 

Dry ashing, ICP 2430 220 226* 10,25* 2,90* 100 

Dry ashing, 

colorimetric 
2260 112 56** 2.54** 0.72** 100 

EPA method 3052, 

ICP 
2355 110 151** 7.08** 2.00** 100 

EPA method 3052, 

colorimetric 
2430 95 226* 10.25* 2.90* 100 

* - “satisfactory” results; ** - “good” results 

 

As seen from the data colorimetric and ICP methods for total phosphorus determination are highly correlated 

and the results are generally within 5 to 10 % of each other. 

Conclusion 
The results of the determination of total phosphorus in soils by ICP after complete sample dissolution by HF 

showed that the calibration line method provided lower values. That is why simultaneous determination of P 

with other macro- and microelements is risky. In all cases we have to use standard supplement method in 

order to obtain correct results. In the case of plant materials phosphorous content can be determined directly 

by the calibration line method. 
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Abstract 
Temporal and spatial monitoring of soil structural heterogeneity is useful to predict physical changes in soils. 

Usual methods implemented to characterise soil structure are generally destructive and time-consuming. 

Further technical solutions are then required to describe rapidly the soil structure without any disturbance. 

Electrical resistivity tomography (ERT) was proven to be efficient technique for detecting accurately zones 

with contrasted bulk density. Consequently space and time changes in soil structure might be characterized 

by ERT. We aimed then at testing this possibility by using the 2D ERT method.  

 

We have monitored for 8 months a typical Luvisol by ERT. The soil was initially and locally compacted by a 

heavy tractor in the objective of creating zones of high bulk density. The studied plot encompassed bare soil 

and wheat crop. ERT results indicated the soil drying process which occurred in summer and particularly 

under wheat crop. We show also that electrical resistivity was higher in summer with local zone of very high 

resistivity probably due to soil cracking. 

 

Introduction 
Soil structure i.e. the arrangement of soil particles in space (Guérif 1987) is one of the factors controlling the 

physical quality of soils. In agricultural context, soil structure changes in space and time as function of plants 

growth, earthworm’s activity, tillage, and climate. Compaction related to in-field traffic can modify 

significantly structure of cultivated layers in increasing bulk density. Soil compaction results in physical soil 

degradations as well in agronomic and environmental problems. Solutions are then required to characterise 

spatial and temporal changes in soil structure. Several methods were already developed to describe structural 

components at the profile scale (i.e. at macrostructural scale). For instance, these last ones are based on the 

visual description of a soil pit (Roger-Estrade et al. 2004), on soil sampling and measurements of soil 

properties such as bulk density, porosity, water retention, and penetration resistance, or on characterisation of 

the water infiltration. However these methods disturb soil and are also time-consuming. As a result, they 

cannot be implemented (or otherwise hardly) for a spatial and temporal monitoring of the soil structural 

heterogeneity.  

 

Reversely electrical resistivity was proven to be a useful and efficient technique for soil structure description 

(Besson et al. 2004; Séger et al. 2009) at scale of entire soil profile. Electrical resistivity of soils depends on 

several soil parameters as, for instance, the volumetric clay and water contents, according to preferential 

electrical pathways within pores filled in water and at the surface of clay particles. Consequently, electrical 

resistivity should depend on soil bulk density and more generally on soil structural changes in space and 

time.  

 

We aim then at examining the efficiency of Electrical Resisitivity Tomography (ERT) technique for 

characterising space and time changes of the soil structure within tilled layer of agricultural field, i.e. 

changes in soil macrostructure due to traffic (compaction) and climate activity (crack formation). The studied 

site presents a Luvisol (Beauce region, France).  

 

This work corresponded to a section of the FP7-DIGISOIL project on “Integrated system of data collection 

technologies for mapping soil properties”. 



© 2010 19th World Congress of Soil Science, Soil Solutions for a Changing World 

1 – 6 August 2010, Brisbane, Australia.  Published on DVD. 
76 

Materials and methods 
Experimental site 

The experiment was conducted in Beauce region (France). The soil was a typical Luvisol. The composition 

of the tilled layer (0-30 cm depth) was 170 g kg
-1

 of clay, 780 g kg
-1

 of silt and 50 g kg
-1

 of sand. A subplot 

of 25 m x 7.20 m was chosen for the study (Figure 1). 

 
Figure 8.  Design of the experiment 
 

We created four compacted bands (Band 1, Band 2, Band 3, Band 4) by wheeling at water field capacity 

(mass water content equal to 23%) with a heavy tractor. We obtained then zones highly compacted (zones C) 

under wheel tracks and non-compacted zones (NC) outside of bands. Half part of the studied zone was 

cropped by wheat (zone C) in view of accelerating the drying up of the soil. This was located in the Central 

part of the study plot. The other part was conducted on bare soil (B). Finally the study gathered four 

modalities: 

C-C: Compacted and wheat crop 

C-B: Compacted and bare soil 

NC-C: Non-compacted and wheat crop 

NC-B: Non-compacted and bare soil 

The experiment have been realized for 10 months, i.e. from March 2009 (sowing operation) to December 

2009. The wheat yield was done in July 2009. From April to October, the soil was relatively dried and 

cracked. From November to December, the soil was in a wetting period due to rainfalls (this period was still 

not analysed here). 

  

Electrical resistivity measurements 

Electrical resistivity is a measure of the restriction of the media to an electrical flow artificially created and 

applied to soils. We used Electrical Resistivity Tomography (ERT) technique and interpreted apparent 

resistivity into 2D inverted resistivity models using inversion algorithm.  

ERT measurements were realised by a system of 72 electrodes spaced 0.10 m apart, connected to a SyscalPro 

resistivity meter (Iris Instrument, Orleans, France). Electrodes configuration was Wenner type. ERT 

measurements were realized all along the lines I to VI (see Figure 1), perpendicular to the traffic direction. 

For each line, ERT was measured twice a week or twice a month from March to December.   

Apparent resistivity were inverted and imaged by the RES2DINV software (Loke and Barker 1996) with 

“model refinement” option (cells with widths of half the unit spacing) and “robust inversion” (Claerbout and 

Muir 1973).   

 

Characterisation of the soil structure 

After ERT measurements and at similar location, i.e. along the lines I to VI, soil structure was also 

characterised by usual and destructive methods of structural description as the morphological description 

detailed by Roger-Estrade et al. (2004). With this method, the zones showing different degrees of 

compaction were visually identified and ranged into macroscopic features. Once the morphological profiles 

ended, bulk density was also determined on undisturbed soil cores sampled in pits. The spatial and temoral 

monitoring have been then realized along lines as mentioned above and at regular dates for the entire 

experimental period.  

 



© 2010 19th World Congress of Soil Science, Soil Solutions for a Changing World 

1 – 6 August 2010, Brisbane, Australia.  Published on DVD. 
77 

Ancillary data 

Because of their influences on electrical resistivity, the soil temperature and the volumetric water content 

were recorded during the experiment. They were measured hourly respectively by thermometric probes and 

by TDR probes during the entire period of the experiment. The probes were installed at several depths (from 

5 cm to 55 cm) for the four modalities (C-C; C-B; NC-C; NC-B), close to the studied plot but far enough to 

preclude interactions with ERT measurements.   

The data of temperature enabled us to correct the temperature effect on ERT (Campbell et al. 1948). 
 

First Results 
Concerning the characterisation of the soil structure, large compacted zones (0.60 m x 0.30 m) were 

identified at the position of wheel tracks. Mean value of bulk density measured in these compacted zones 

was equal to 1.55 g.cm
-3

 whereas it was equal to 1.35 g.cm
-3

 in the non-compacted zones. Figure 2 shows the 

water content profile measured at two dates: 10
th
 July 2009 and 18

th
 August 2009. 
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Figure 9.  Water content profiles measured (a) the 16

th
 of June 2009 and (b) the 18

th
 of August 2009. The 

reference depth is the soil surface for C and NC zones.  
  

For the two dates, we can observe crop effect on soil moisture: water content was small when the soil was  

cultivated. This result can be explained by higher evapotranspiration in the cropped zone than in the bare soil 

during the dry period.   

The temporal monitoring of water content showed also that soil was dry in August, in particular in soil 

surface (5 cm and 15 cm depth) according to climatic conditions.  

Water content was higher in the compacted zone than in the non-compacted zone for the depth up to 25-

30 cm. Reversely water content was higher in the non-compacted zones for deepest layers (25-30 cm depth). 

Similar results were obtained for gravimetric water content (not showed here).      
 

Results of ERT measured the 10
th
 of June 2009 and the 18

th
 of August 2009 along the line III are presented in 

Figure 3.   

 
Figure 10.  2D ERT measured along the line III (a) the 10

th
 of June 2009 and (b) the 18

th
 of August 2009. Grey 

lines (Band 1, 2, 3 and 4) show the location of compacted zones.  

a) 16
th

 June 

b) 18
th
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We can identify compacted bands on ERT and in particular in near soil surface (from about 0 to 0.1 m depth. 

Indeed resistivities were small with values close to 15 ohm.m.  

 

Reversely, high values of resistivity increasing with time were encountered in the first 40 centimetres of soil 

and in the central area of ERT (between 1.6 and 5.6 m). This zone corresponded to the cropped system which 

was propably responsible for a huge drying of the soil.  

 

To comfort ERT results as obtained in field conditions, we have realized additional laboratory experiments   

which consisted in measuring electrical resistivity on soil cores at given bulk density and for a water content 

range generally encountered in field. We aimed then at better describing the relationship between 

geophysical data and soil variables of interest, i.e. the bulk density and soil water content, for such type of 

soil. We could then observe, for instance, that electrical resistivity varied from 20 to 70 ohm.m when the 

bulk density was equal to 1.45 g.cm
-3

 and when water content ranged from 10% to 22%. As a consequence, 

the high values (up to 250 ohm.m) obtained in the central area of ERT (as shown on Figure 3b for the 18
th
 of 

August 2009), could not be explained only by drying. Another physical process could interact on resistivity, 

i.e. soil cracking. Indeed cracks are filled in air. They represent then structural components electrically 

resistant.  

 

Conclusion 
This study aimed at monitoring soil structure in time and space in 2D by ERT technique. ERT results shows 

that wheat crop is responsible for a huge drying of soil. Very high values of electrical resistivity measured in 

August could be explained by soil cracking. This process cannot be detected by usual and destructive 

methods. Electrical Resistivity Tomography appears then as a promising and useful tool for in-situ non-

destructive temporal monitoring of soil structure.  
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Abstract 
Calibrations for soil carbon content measured by dry combustion (Total Carbon, TC) and chromate oxidation 

(Organic Carbon, CORG) of soils from the Brazilian National Soil Collection were made using Fourier 

Transform Near- and Mid-Infrared Diffuse Reflectance Spectroscopy combined with PLS statistics. 

Calibration sets of sample populations of different carbon ranges, soil taxonomic classes, and soil textural 

groups were established. Calibrations obtained for the largest TC and CORG ranges were better, compared to 

the lower ones, but lower RMSD and RD were found for the lower carbon ranges. Taxonomic soil class was 

not an adequate criterion for calibration set formation. Soil texture had effects on calibrations, especially 

using NIRS, because of the particular size effect to which NIRS was more sensitive than Mid-IR. In general, 

DRIFTS showed better performance than NIRS. NIRS only outperformed DRIFTS when used with a 

calibration set that was fairly homogeneous in its particle size distribution. Results demonstrated that while 

calibrations can be developed using either DRIFTS or NIRS for even a very diverse set of soil samples, 

which will determine C over a wide range of concentrations inherent in such a diverse set, it is desirable to 

separate sample populations by soil textural properties for calibration development to achieve more accurate 

results. 

 

Key Words 
Chemometrics, granulometric composition, bulk soil 

 

Introduction 
The application of infrared spectroscopy (near- and mid-IR) for the quantitative analysis of soils has become 

of increased interest over the last one and a half decades or so. One of the main reasons is the need for new 

methodologies for the assessment of C forms in soils and the potential of the technique both for laboratory 

and field measurements. Potential future policies for C sequestration in agriculture (crop production systems 

and pasture grazing) and forestry (particularly eucalyptus and pine plantations) would require the 

measurement of soil C over time at many locations to evaluate how much C is being sequestered or lost from 

the soil. Standard methods such as chromate oxidation or high temperature combustion are slow, expensive 

or both. Loss-on-ignition, which is a fairly cheap and fast method, for highly weathered tropical soils suffers 

from accuracy problems (Nelson and Sommers 1996; Watson et al. 2000; Lal et al. 2001). 

Infrared spectroscopy, in turn, is a technique that is able to measure large number of samples, and determine 

any number of analytes at a time, once calibrations are developed (Reeves et al. 1999). There is numerous 

literature about the types of soil parameters, such as total C (CTOT), organic C (CORG), forms of N, 

macroelements, texture etc., that can be potentially determined by IR spectroscopy (e.g. Viscarra-Rossel et 

al. 2006). 

For application on soils, mid-IR Fourier-transform diffuse reflectance spectroscopy (DRIFTS) seems to be 

more robust than near infrared (NIRS) (Madari et al. 2005), however, the application of either of them is not 

always straightforward for the several possible levels of future application. Fairly accurate calibrations can 

be developed for the local level (e.g. plot or even farm) (Madari et al. 2006), but to achieve robust 

calibrations at regional or national level criteria for calibration development has to be investigated. 

The objective of this study was to investigate what kind of major criteria could be applied when sample 

populations for calibration development are to be selected, in the case of soils, to determine TC and CORG 

with the highest accuracy possible using around 1000 samples from the National Soil Collection of the 

Brazilian Agricultural Research Corporation (Embrapa) complemented by some Ferralsol samples from the 

collection of the Institute of Agronomy (IAC-Campinas, São Paulo State of Brazil).  

 

Methods 
Samples 

Three hundred and sixty seven soil profiles from all Brazilian biomes were selected from the National Soil 



© 2010 19th World Congress of Soil Science, Soil Solutions for a Changing World 

1 – 6 August 2010, Brisbane, Australia.  Published on DVD. 
80 

Collection of the Brazilian National Soil Research Center, Rio de Janeiro State, and from the soil collection 

of the Agricultural Institute of Campinas (IAC), São Paulo State, Brazil. The distribution of the soil profiles 

over Brazil is shown in Figure 1. Diagnostic soil horizons were selected, on average 3 horizons from each 

profile, resulting in 1135 soil samples for carbon measured by dry combustion (TC), and 1014 soil samples 

for carbon measured by dichromate oxidation (CORG). The TC values of the entire test set ranged between 

0.4 and 555.0 g/kg, and for CORG from 0.2 to 401.9 g/kg. 

 

  

BIOMES

 
Figure 1.  Distribution of the examined soil profiles in Brazilian biomes. 

 
Sample preparation and conventional sample analysis 

All samples were bulk soil samples. Each sample was dried at 65 °C and finely ground to pass an 80-mesh 

sieve. The TC of these samples was measured by combustion at 925 °C (Nelson and Sommers 1996) using a 

Perkin Elmer CHNS/O Series II 2400 Analyzer. Coefficient of variation of the method was 3%. In this work 

we refer to the carbon that can be determined by chromate oxidation (CORG), the so-called Walkley-Black 

method, as organic carbon (Embrapa 1997). This involves oxidation of the soil organic matter by potassium 

dichromate solution (K2Cr2O7, 0.4N mixed with cc. H2SO4) combined with 5 minute heating and boiling. 

After that the solution was cooled down distilled water was added to it, followed by titration with ammonium 

sulphate (Fe(NH4)2(SO4)2 • 6H2O, 0.1N) in the presence of phosphoric acid (cc. H3PO4, 85%) using 

diphenylamine as indicator. These methods were used as reference for calibrations of the Mid-IR and NIR 

techniques. 

 

Infrared Analysis 

Mid (2,500-25,000 nm) and near (110-2,500 nm) infrared spectra of the soils were obtained by a Digilab 

(Bio-Rad) FTS-7000 spectrometer equipped with a KBr beamsplitter and a DTGS detector for the mid-IR 

region and with a quartz beamsplitter and InSb liquid nitrogen cooled detector for the near IR region. In both 

regions samples were scanned at 4 cm
-1

 resolution with 64 co-added scans per spectrum. Samples, for both 

spectral regions, were ground (80 mesh) and non-diluted for the measurement (Reeves 2003). A Pike 

Autodiff autosampler /reflectance accesory was used. The blank reference standards were KBr and S for 

DRIFTS and NIRS respectively. 

 

Chemometrics 

Calibration development was carried out using SAS PLS with a custom made program testing 22 different 

spectral pretreatments for both analytes (Reeves and Delwiche 2004). Final calibrations were done using the 

entire spectral range and averaging every 4 data points, for both spectral regions. Calibrations were 

developed using the one-out cross-validation procedure with and without an independent test set. Calibration 

sets of sample populations of different carbon ranges, soil taxonomic classes, and soil textural groups were 

established (shown in footnote of Table 1). 

 

Results 
The mid- (DRIFTS) and near-infrared (NIRS) calibration results are shown in Table 1. Results on the whole 

sample set demonstrated that either NIRS (CORG: R
2
=0.809; TC: R

2
=0.930) and DRIFTS (R

2
=0.934; 

R
2
=0.948) are promising techniques for the development of calibrations for quantitative soil C analysis. 

Making up calibration sets by soil C content and by soil taxonomic groups did not improve the accuracy of 

the calibrations, however, major improvement was achieved by calibration sets based on the texture (particle 
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size distribution) of the individual samples. Both NIRS (e.g. CORG: R
2
=0.975) and DRIFTS (CORG: 

R
2
=0.967) performed well on the calibration set that contained samples that had similar particle size 

distributions, such as the very clayey samples (>60% clay). The accuracy of NIRS, however, decreased when 

applied to more heterogeneous sample sets (clayey [CORG: NIRS R
2
=0.938, DRIFTS R

2
=0.962] and 

medium texture [CORG: NIRS R
2
=0.871, DRIFTS R

2
=0.917]), while DRIFTS kept showing good accuracy. 

The difference in accuracy was more evident for CORG. 

 
Table 1. Mid-infrared (DRIFTS) and near infrared (NIRS) calibration results for soil carbon. 

1Sample Data Sets 2MSC Derivative 3GAP 4# Factors R2 5RMSD 6RD 

NIRS, Total Carbon (TC) 

Carbon1 No Second 8 15 0.931 17.66 0.574 

Carbon2 No First 16 13 0.739 7.90 0.473 

Carbon 3 No First 8 12 0.750 4.80 0.356 

Carbon 4 No Second 4 4 0.952 34.56 0.180 

NIRS, Organic Carbon (CORG) 

Carbon 5 No First 16 13 0.809 18.55 0.968 

Carbon 6 No Second 8 10 0712 5.23 0.478 

Carbon 7 No Second 8 9 0.726 3.43 0.385 

DRIFTS, Total Carbon (TC) 

Carbon 1 Yes First 4 13 0.947 15.38 0.504 

Carbon 2 Yes First 8 12 0.856 5.87 0.352 

Carbon 3 Yes First 16 11 0.811 4.18 0.312 

Carbon 4 No Second 4 4 0.948 36.14 0.188 

DRIFTS, Organic Carbon (CORG) 

Carbon 5 Yes First 8 13 0.934 10.88 0.568 

Carbon 6 Yes First 4 12 0.810 4.24 0.400 

Carbon 7 No First 6 11 0.840 2.62 0.294 

NIRS, Taxonomic Soil Class, Total Carbon (TC) 

Soilclass1 No First 16 9 0.725 7.65 0.433 

Soilclass 2 No Second 4 5 0.854 5.72 0.383 

NIRS, Taxonomic Soil Class, Organic Carbon (CORG) 

Soilclass 3 No First 16 9 0.725 7.70 0.440 

Soilclass 2 No Second 4 4 0.784 6.75 0.470 

DRIFTS, Taxonomic Soil Class, Total Carbon (TC) 

Soilclass 1 No First 4 10 0.861 5.44 0.308 

Soilclass 2 Yes First 8 11 0.914 4.40 0.295 

DRIFTS, Taxonomic Soil Class, Organic Carbon (CORG) 

Soilclass 3 No First 4 10 0.862 5.45 0.312 

Soilclass 4 Yes Second 16 10 0.905 4.49 0.313 

NIRS, Soil Textural Group, Total Carbon (TC) 

Texture1 No First 8 10 0.961 6.42 0.293 

Texture 2 No First 8 12 0.930 7.26 0.359 

Texture 3 No Second 32 8 0.866 6.39 0.345 

NIRS, Soil Textural Group, Organic Carbon (CORG) 

Texture 4 No Second 4 8 0.975 5.33 0.309 

Texture 5 No First 8 12 0.938 7.00 0.487 

Texture 6 No Second 32 8 0.871 6.37 0.568 

DRIFTS, Soil Textural Group, Total Carbon (TC) 

Texture1 Yes First 16 5 0.953 7.05 0.322 

Texture 2 Yes First 4 12 0.954 5.89 0.291 

Texture 3 Yes First 8 12 0.905 5.39 0.291 

DRIFTS, Soil Textural Group, Organic Carbon (CORG) 

Texture 4 Yes Second 32 7 0.967 6.19 0.358 

Texture 5 Yes First 4 12 0.962 5.52 0.384 

Texture 6 Yes First 8 13 0.917 5.11 0.455 

1
Calibration sets Carbon1 to 4 are based on soil total carbon (TC) content (0.4 ≤ C ≤ 555.0, 0.4 ≤ C ≤ 99.1, 0.4 ≤ C 

39.9, and 0.8 ≤ C 555.0 g/kg, respectively); Carbon5 to 7 are based on organic carbon (CORG)content (0.2 ≤ C ≤ 401.9, 

0.2 ≤ C 66.0, and 0.2 ≤ C 30.0 g/kg, respectively); Soilclass1 and 3 and 2 and 4 are based on soil taxonomy class 

(Ferralsols and Acrisols, respectively) for TC and CORG calibration; Texture1 and 4, 2 and 5, and 3 and 6 are based on 

soil textural grouping (very clayey, clayey, and medium texture, respectively) for TC and CORG calibration. 
2
Multiplicative Scatter Correction;  

3
Number of data points skipped for derivatives; 

4
Number of Partial Least Squares Factors used in calibration;  

5
Rootmean Squared Deviation;  

6
Relative Difference. Adapted from Madari et al. (2005). 
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Conclusions 
Calibrations can be developed using either DRIFTS or NIRS for even a very diverse set of soil samples, 

which will determine C over a wide range of concentrations inherent in such a diverse set. However, to 

obtain more reliable predictions for soil C content using a very diverse set as calibration set does not appear 

to be the most useful approach. Developing calibrations for ranges of soil C content decreased the error of 

the calibrations (RMSD and RD), however, resulted in lower accuracy (R
2
). Calibrations based on soil 

textural classes also do not seem to be the right approach for soil carbon content prediction. The reason for 

this might be that calibrations using a set of samples of large variance in textural composition suffer from the 

sensitivity of infrared spectroscopy on particle size distribution of the samples, especially in the case of 

NIRS. Near infrared spectroscopy (NIRS) had excellent performance (R
2
 = 0.961-0.975) when applied for a 

calibration set that contained samples that had very similar particle size distribution, but its performance 

declined for more heterogeneous sample populations regarding particle size. Diffuse reflectance infrared 

spectroscopy (DRIFTS), by being less influenced by specular effects, showed reasonable performance (R
2
 > 

0.95) for sample sets containing soils of a wide range of particle size distribution. For calibration purposes 

for soil carbon content (both TC and CORG) prediction, therefore, it seems to be desirable to create 

calibration sets based on soil textural properties and then to use the most adequate spectral region (NIR for 

the more homogeneous sets, or Mid-IR for the less homogeneous ones) for the calibration. 
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Abstract 
The project iSOIL “Interactions between soil related sciences – Linking geophysics, soil science and digital 

soil mapping”. iSOIL focuses on improving and developing fast and reliable mapping approaches of soil 

properties, soil functions, and soil degradation threats. This requires the improvement and integration of 

advanced soil sampling approaches, geophysical and spectroscopic measurement techniques, as well as 

pedometric and pedophysical approaches. A prerequisite for the application of geophysical measurements for 

proximal soil sensing are reproducible and reliable data. The procedure of the CEN Workshop of the 

European Committee for Standardization (CEN) seems to be an adequate framework to introduce 

standardised procedures into geophysical measurements. Because electromagnetic induction measurements 

(EMI) are widely used for soil mapping the existence of several problems with the comparability of EMI 

results, we want to establish a widely accepted voluntary standard for a best practice of EMI with help of the 

CEN Workshop. 

 

Key Words 
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Introduction 
All terrestrial environmental processes involve the pedon, including hydrological, geological, 

meteorological, ecological and anthropological. These processes occur in particular at the upper soil which is 

the dynamic area from the land surface to the ground of the upper aquifer. Consequently investigations of 

soil properties become an increasing importance for the majority of land and water resource management. 

Fast and cost-effective techniques as well as recommendations for high resolution, economically feasible, 

and target oriented soil mapping under conditions realistic for end-users are needed. The development and 

evaluation of such techniques and recommendation is the aim of the iSOIL project. A general overview 

about the project iSOIL will be given in the following. The reproducibility of data of a single geophysical 

measurement method is the prerequisite for common interpretation of different methods. In our project we 

focus on one geophysical method – the electromagnetic induction measurements for the proximal soil 

sensing. We will give more details on one activity of the iSOIL project: the CEN Workshop” Best Practice 

Approach for electromagnetic induction measurements of the near surface” to establish widely accepted 

voluntary standard for a best practice of EMI measurement. Please see also our other presentation 

“Acquisition and reliability of geophysical data in soil science” about results concerning reproducibility of 

EM38DD data to show the importance and the need for such best practice approaches. 

 

Project iSOIL 
iSOIL - “Interactions between soil related sciences – Linking geophysics, soil science and digital soil 

mapping” is a project financed by the European Commission within the 7th Framework Program. The iSOIL 

consortium consists of 19 partners from nine countries. In the project are involved universities, research 

organizations as well as small and medium sized enterprises (see www.isoil.info).  

 

The focus of the project iSOIL is to develop new and to improve existing strategies and innovative methods 

for generating accurate, high-resolution soil property maps. At the same time the developments will reduce 

costs compared to traditional soil mapping. The project tackles this challenge by integrating the following 

three major components: 

(i) high resolution, non-destructive geophysical (e.g. electromagnetic induction -EMI; 

ground penetrating radar, magnetics, seismics), spectroscopic methods and other suitable 

methods, 

(ii) spatial inter- and extrapolations (e.g. geostatistics, machine learning) concepts 

(McBratney et al. 2003), and 

(iii) soil sampling and validation schemes to provide representative and transferable results 

(Brus et al. 2006; de Gruiter et al. 2009; Behrens et al. 2009). 
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Within iSOIL we will develop, validate, and evaluate concepts and strategies for transferring measured 

physical parameter distributions into soil property, soil function and soil threat maps of different scales, 

which are relevant to and demanded by the “Thematic Strategy for Soil Protection” (European Commission 

2006). The final aim of the iSOIL project is to provide techniques and recommendations for high resolution, 

economically feasible, and target- oriented soil mapping under conditions which are realistic for end-user. 

The resulting soil property maps can be used for precision agriculture applications and soil degradation 

threats studies, e.g. erosion, compaction and soil organic matter decline. 
 

The iSOIL project is structured in seven work packages (WP), see Figure 1. Two WPs apply the concept of 

mobile measuring platforms by integrating existing geophysical techniques (WP1) and exploring emerging 

technologies (WP 2). WP3 will develop physically based transfer functions or so called constitutive models 

to establish site-specific relations between geophysical and soil parameters. WP4 will use the pedophysical 

relations found in WP3 together with geostatistical methods for Digital Soil Mapping (DSM) to derive digital 

soil property maps. Furthermore WP4 will optimize soil sampling schemes for calibration of sensor data in 

WP1, 2 and 3. WP5 is responsible for validation of the derived techniques and exploring its uses in studying 

soil threats. WP6 will formulate guidelines and standardize technologies. WP7 is responsible for 

dissemination of the outcome to relevant end-users (WP7) 
 

 
Figure 1.   Relation of the work packages to the overall tasks of the iSOIL project. 
 

CEN Workshop 
The reproducibility of data of a single geophysical measurement method is a important prerequisite for 

common interpretation of different methods. There is a need to introduce standardised procedures into 

geophysical measurements. We focus on one geophysical method for standardization– the electromagnetic 

induction method. Electromagnetic induction (EMI) measures the apparent electrical conductivity of the 

subsurface, which corresponds with different soil properties such as clay content, water content, and salinity. 

EMI methods are already widely use for proximal soil sensing. Measured EMI data could be compared 

qualitatively for a single survey, but it is difficult to compare data from different surveys. This can be 

explained by an analysis of the relevant factors. The factors influencing the measured data could be divided 

into two main groups:  
 

1) Factors related to the subject of study and environmental conditions  

 Variations of soil conditions 

 Variations of weather conditions especially temperature, humidity and cloudiness 

2) Factors related to instruments and their application 

Different calibration procedures 

Instrumental drifts especially battery voltage, temperature drift and alteration of electronic parts over  

time. 
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Furthermore, there are significant differences between the various EMI instruments e.g. in the calibration, 

operating frequency and effective depth. Another problem lies in the quantitative difference of data measured 

with different instruments under uniform circumstances.  

 

Due to the importance of the reproducibility of electromagnetic induction measurements for the proximal 

soil sensing, the iSOIL project undertakes the effort of establishing widely accepted voluntary standard for a 

best practice of EMI measurement. A very suitable approach for this purpose is the organisation of a CEN 

workshop. CEN is the European Committee for Standardization. The result of a CEN Workshop is an 

agreement which offers a new mechanism and approach to standardization. There are non-bureaucratic rules 

to set up a workshop and the structure decided is set up by members in the workshop to reach maximum 

efficiency. A CEN Workshop is open to anyone willing to join and accepting the Business Plan with no 

geographical restrictions. The CEN workshop comprised a public process. The draft business plan is on web 

for comments for a defined period prior to the Workshop’s launch. In comparison to other standardization 

procedures the CEN Workshop is a fast process, because of reduced rules, the privileging of electronic 

working and results based on consensus during a meeting or by electronic means. The record is 5 months and 

normally it takes 12-15 months. The result of the foreseen CEN Workshop is a consolidated document which 

is called a CEN Workshop Agreement. Any interested party is welcome to register for membership in 

accordance with the CEN Rules for CEN Workshops.  

 

 
Figure 2.  Procedure and anticipated schedule of the iSOIL-CEN Workshop ”Best Practice Approach for 

electromagnetic induction measurements of the near surface”. 

 

The iSOIL project organizes a CEN Workshop on ”Best Practice Approach for electromagnetic induction 

measurements of the near surface”. We will consider the most common instruments for electromagnetic 

induction measurement of the near surface such as instruments from Geonics (e.g. EM31, EM38, EM38-

DD), GSSI (e.g. Profiler) Dualem (DUALEM-2) and GF-Instruments. The workshop aims at a voluntary 

standardization of electromagnetic induction measurement to ensure that results can be evaluated and 

processed under uniform circumstances and can be comparable. The workshop will consider points listed in 

Table 1. The procedure and anticipated schedule is shown in Figure 2. The final agreement of the iSOIL-

CEN workshop should provided guidelines for the best practice approach of EMI measurement. It should 

help to minimize such potential problems of e.g. reproducibility of measurements and will help to improve 

the comparability of data. This could give the opportunity of a better comparison and joint interpretation of 

measurements done at different times and with different instruments as well as of establishing a European 

database for electromagnetic data.  
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Table 1: Proposed objectives of the CEN Workshop 

1. Definition of terms to be used 

consistently 

Terms are used in a different content e.g. calibration. It is 

necessary to define terms that have to be used consistently. 

2. Best practice field calibration 

method  
 

To avoid problems by e.g. different operators and different 

instruments there should be some guidelines for instrument 

calibration and to choose a single location for the field site to 

carry out calibration and the calibration interval for the 

considered instruments. 

3. Definition of reference standards 

for instrument evaluation 
 

Apart from the series of EM38 instrument from Geonics, all other 

instruments are factory calibrated. To estimate the effects caused 

by different calibration standards, a reference standard for 

instrument evaluation and their implementation should be 

discussed. 

4. Best practice measurement at 

field site 
 

The best practice measurement should improve the repeatability 

and reproducibility of data and minimize the effect of uncertainty 

to some agreed value. It will consider e.g. definition of measuring 

procedures; selection of the best location to carry out calibration, 

time steps for recalibration and performance of reference 

measurements. 

5. Quality assurance 

 

Quality assurance is an integral part of every field measurement. 

The purpose is to establish standardized field protocols to meet 

quality goals for all field activities and to ensure that all site 

specific data are documented. 

6. Possibilities of data processing 

and evaluation 

 

Results of electromagnetic induction methods are processed by 

various techniques.  A summary about possible data processing 

and evaluation methods will be compiled and advantages and 

restrictions will be listed.  

7. Areas of application 

 

Electromagnetic induction methods are applied in several areas. 

An overview will show examples of application in which best 

comparable results are obtained and gives recommendations for 

monitoring the near surface. 

 

The current status of the iSOIL-CEN Workshop ”Best Practice Approach for electromagnetic induction 

measurements of the near surface” will be presented at the 19th World Congress of Soil Science.  
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Abstract 
Wireless technology is increasingly used to monitor temporal changes in soil conditions. Because of the 

limited number of such monitoring units that can be economically installed throughout an agricultural field, 

it is critical to identify proper locations for these units. On-the-go soil sensing technology provides the 

opportunity to rapidly obtain high-resolution data on soil spatial variability at a relatively low cost. 

Prescribing representative monitoring sites based on multiple sensor-based data layers is an important 

process, yet in practice, this selection is conducted in a very subjective manner. This research provides an 

analytical methodology for assessing the quality of selection of a set of strategic locations in an agricultural 

field. The methodology is shown using a combination of apparent soil electrical conductivity (ECa) and field 

elevation maps to identify sites for water content monitoring. 

 

Key Words 
On-the-go soil sensing, targeted sampling, electrical conductivity, elevation, irrigation. 

 

Introduction 
The efficiency of a centre pivot irrigation system depends on its ability to meet the water demands of the 

growing crop (Sadler et al. 2005). While limited water supplies can reduce crop yield due to water stress, 

excessive irrigation can result in wasted resources and, if extreme, may also reduce yields. The optimum 

quantity of irrigation water changes temporally and spatially. Various methods have been used to focus on 

either level of variability. Thus, soil water monitoring and crop modelling often facilitate improved irrigation 

scheduling. On the other hand, dense-resolution proximal soil sensing allows a producer to identify the 

spatial variability of topsoil water storage capacity, which also affects the need for irrigation water. A 

combination of data layers with high spatial resolution can be used to define targeted field locations for soil 

water monitoring. The most appropriate strategy might be placement of a few sets of soil water sensors with 

wireless communication capability in these locations. Since water storage capacity depends on the properties 

of the soil profile and the potential for surface water runoff, high density measurement of apparent soil 

electrical conductivity (ECa) and field elevation can be used to define field locations with different levels of 

water available to the crop during the growing season. 

 

Selecting the appropriate number of strategic locations within a field is critical, but this process is typically 

subjective. Practitioners who use high-resolution data layers rely on the following general rules: 1) selected 

locations must cover the entire range of data from each source; 2) selected locations must avoid field 

boundaries and other transition zones; and 3) practitioners must spread locations over the entire field. While 

these “guidelines” are useful, they do not translate into an operational algorithm and, therefore, can produce 

numerous solutions that result in differing degrees of satisfaction. In principle, this process is similar to 

prescribing the targeted sampling locations needed to calibrate high-resolution data or to quantify the 

agronomic soil attributes of established management zones (Lesch 2005; Minasny and McBratney 2006; 

Brus and Heuvelink 2007; de Gruijter et al. 2008). The objective of this paper is to define a set of criteria 

that can be used to compare alternative schemes of soil sensor telemetry placement, basing these criteria on 

the three general rules used to analyze soil ECa and field elevation maps.  

 

Methods 
Optimization Criteria 

As previously mentioned, the definition of the optimum guided sampling scheme is quite vague. There are 

many parameters that can quantify 1) the spatial separation; 2) the spread across both sets of measurements; 

and 3) the local homogeneity within each set of measurements. Furthermore, there are several alternatives to 

deriving the overall objective function as a combination of these parameters. The goodness of spatial 

separation among selected sampling locations can be assessed by comparing the field areas represented by 

each sample; by comparing the variance of the error for an interpolated surface; or by calculating the 



© 2010 19th World Congress of Soil Science, Soil Solutions for a Changing World 

1 – 6 August 2010, Brisbane, Australia.  Published on DVD. 
88 

horizontal distance between each pair of locations. In this study, the S-optimality criterion (SAS 2008) was 

selected.  It seeks to maximize the harmonic mean distance from each sampling location to all other 

sampling locations. Data spread across each of the two sets of measurements can be accessed using either the 

degree of variability within the selected layer of data or an information-based criterion, such as D-optimality 

(SAS 2008), which increases with greater coverage of the range of measurements. The D-optimality based 

on the assumption of a linear model (the proportional relationship between sensor outputs and agronomic 

parameters of interest) was selected. Finally, local homogeneity can be derived from the slope of a non-

smooth surface constructed from all the measurements, or based on neighbourhood statistics. It was decided 

this project would consider only the immediate neighbours. Because of the potential for the anisotropic 

behaviour of sensor data, the selection of neighbours involved searching for the two nearest measurements 

from the same pass and the two from both neighbouring passes: 
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where ni is the number of existing nearest neighbours for the i
th
 location (ni = 2 to 4); and Hmax is the 

maximum value of 1-Hcr for the given dataset, obtained using N points with the greatest mean squared 

difference with neighbours. 

 

To set the overall objective function (OF), the geometric mean of all criteria was selected. The D-optimality 

and local homogeneity criteria were calculated twice (for ECa and for field elevation). Prior to multiplication, 

each layer was normalized with respect to the median of a large number (e.g., 100,000) of randomly selected 

sets of monitoring site locations. Because of cost constraints, the number of such locations was limited to 

nine, which nonetheless allowed the three locations to correspond to three levels (low, medium, and high) of 

ECa and field elevation (even with poor correlation between them). 

 

Sensor Data 

To obtain high resolution maps of apparent electrical conductivity and elevation, a Veris
®
 3150 unit (Mobile 

Sensor Platform, Veris Technologies, Inc., Salina, Kansas) equipped with an RTK-level AgGPS
®
 442 GNSS 

receiver (Trimble Navigation Limited, Sunnyvale, California) was used to map a 37-ha field located at the 

University of Nebraska-Lincoln Agricultural Research and Development Centre near Mead, Nebraska, USA 

(Figure 1). Although the ECa was mapped with two depths of investigation (specifically, 0-30 cm and 0-

90 cm), only the shallow measurements were used in this research. Both ECa and elevation data were 

collected with 1 Hz mapping frequency while moving at approximately 1.5 m/s travel speed with a 13.7 m 

swath width, which resulted in about 30 thousand data points. 

 

 
Figure 1.  Field 1.14 at the University of Nebraska-Lincoln Agricultural Research and Development Centre 

(Mead, Nebraska). 

 

A script written in Matlab
®
 R2007a (The MathWorks, Inc., Natick, Massachusetts) allowed calculations of 

the OF for any subset of data points dedicated as potential monitoring site locations. However, to run a large 

number (100,000) of random combinations in reasonable time, the original dataset had to be reduced. This 

was accomplished by averaging a 20-m square grid. As a result, 859 locations with corresponding ECa and 

elevation measurements were considered as potential sites for the installation of soil matric potential and 

temperature sensors, as well as wireless communication equipment (Figure 2). After initial runs of the script, 

the nine locations that provided the highest value of the OF were selected and manually adjusted to avoid 

field and waterway boundaries, pivot tracks, etc. The resulting locations were used to install soil sensors 

Tomek Silt Loam 

Olmitz Loam 

Pohocco-Pahuk 

Complex 
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connected to the telemetry nodes for further research on optimized irrigation management. To evaluate the 

quality of our selection, each criterion and the OF were compared with corresponding values for 100,000 

random selections of nine locations. 

 

Results 
Figure 3 illustrates maps of apparent soil electrical conductivity and field elevation, along with the set of 

locations selected to install temporal monitoring equipment. Visually, it appeared that these locations had 

decent field coverage that represented the entire range of both data layers (Figure 4). 

 

 
Figure 2.  A telemetry soil water potential and temperature profile monitoring system installed in one of nine 

selected field locations. 

 
Figure 3.  Map showing shallow (0-30 cm) apparent electrical conductivity, field elevations, and a set of targeted 

soil water monitoring locations. 
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Figure 4.  Relationship between apparent electrical conductivity and field elevation. 

 

As shown in Figure 5, D-optimality (Dopt) was the criterion with the highest range and, therefore, the factor 

given the highest weight in formulating the OF. The homogeneity criterion (Hcr), on the other hand, had the 

least influence. From a practical point of view, this is a positive result, since the main objective of sensor 

placement is to cover the entire range of high-density measurements. Local homogeneity and proximity to 

field boundaries are more useful criteria for restricting rather than ranking potential placements. 
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Figure 5.  Median and range of individual normalized criteria and OF values for 100,000 random soil water 

monitoring selections, with actual installation and optimal sets of targeted points. 

 

Although the set of monitoring locations with the highest value of the OF was one of 100,000 random 

selections, it would be impractical to locate monitors based on this set, because some locations were in 

restricted field areas (close to boundaries and pivot tracks). Avoiding such areas through manual intrusion 

naturally decreased the values of the criteria as well as the overall OF. Although this reduction was not 

significant, eliminating restricted parts of the field prior to the selection process might be appropriate in the 

future.  

 

Although Sopt and Dopt criteria are highly popular in spatial statistics, our definition of Hcr is quite vague. The 

established criterion is well-defined for weighting power since only highly variable locations would reduce 

otherwise high OF values. However, this does not consider the overall neighbourhood statistics. A more 

involved homogeneity criterion will be considered in the future to restrict the consideration of relatively 

small areas with apparent measurement stability, and to allow the selection of field areas with a directional 

gradient of a given measurement. 

 

Conclusion 
In this research, we proposed a method for comprehensive evaluation of soil monitoring site locations with 

respect to multiple high-resolution sensor-based data layers. An objective function was developed 

representing the entire range of sensor data spread across the field and local homogeneity. Partially 

subjective selection of nine locations to install soil water potential and temperature monitoring equipment 

was shown to provide a relatively high OF value that was, however, less than the maximum value for 

100,000 random selections. A more involved process is needed that would automatically select the most 

appropriate set of targeted sampling/monitoring locations. 
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Abstract 
We describe the information content of soil visible–near infrared (vis–NIR) reflectance spectra and map their 

spatial distribution across Australia. The spectra of 4030 surface soil sample from across the country were 

compressed using a principal component analysis (PCA) and the resulting scores were mapped by ordinary 

point kriging. The largely dominant and common feature in the maps was the difference between the more 

expansive, older and more weathered landscapes in the centre and west of Australia and the generally 

younger, more complex landscapes in the east. A surface soil class map derived from the clustering of the 

principal components was similar to an existing soil classification map. Visible–NIR reflectance spectra 

provide an integrative measure to rapidly and efficiently measure the constituents of the soil. It can replace 

the use of traditional soil properties to describe the soil and make geomorphological interpretations of its 

spatial distribution and therefore it can be used to classify soil objectively. 
 

Key Words 
Reflectance spectra, visible–near infrared, kriging, Australian soil. 
 

Introduction 
Recent technological advances in computing and measurement technologies are providing soil scientists with 

tools that can be used to improve the efficiency of soil measurements. Over approximately the last three 

decades and across diverse fields of research from remote sensing to chemometrics, interest has developed in 

the rapid, non-destructive measurements of the intrinsic optical properties of the soil in the visible–near 

infrared (vis–NIR) and mid-infrared (mid-IR) ranges of the electromagnetic spectrum between 400 and 2500 

nm and 2500 nm and 25,000 nm, respectively (e.g. Ben-Dor et al. 1999). Although mid-IR soil spectra has a 

stronger signal, the advantages of the vis-NIR are: the analysis requires less sample preparation, the 

instrumentation is portable and can be easily used in the field, direct links can be made with hyperspectral 

remote sensing (e.g. Gomez et al. 2008) and iron oxides, clay minerals and soil colour can be easily 

measured directly from the spectra (Viscarra Rossel et al. 2009).  
 

Field and laboratory experiments have shown that wavelength-specific absorptions of electromagnetic 

radiation in the vis–NIR provide diagnostic reflectance spectra for the chemical, physical and mineralogical 

composition of the soil. For example, broad and shallow absorption bands in wavelengths smaller than 1000 

nm can be due to iron oxides; narrow, well-defined absorptions near 1400 nm and 1900 nm can be related to 

hydroxyl and water; absorptions near 2200 nm to clay minerals; and various absorptions throughout the 

spectrum to organic matter.  
 

We propose that spectra: (a) provide an integrative measure that can be used to rapidly and efficiently 

measure the constitution of the soil, and (b) spectra can replace the use of traditional soil properties for 

describing the soil and making geomorphological interpretations of its spatial distribution. To support our 

proposal, we describe the information content of Australian soil vis–NIR spectra and map its spatial 

distribution across Australia.  
 

Methods 
Soil samples 

The soil samples used here originated from different sources, comprising continental, regional and field scale 

soil surveys. The samples were from: (i) the Australian Commonwealth Scientific and Industrial Research 

Organisation’s (CSIRO) National Soil Archive, (ii) The National Geochemical Survey of Australia (NGSA), 

(iii) state department and regional surveys and (iv) a number smaller surveys conducted for research into 

precision agriculture. Their spatial distribution is shown in Figure 1. The samples cover the range of 

Australian soil orders (Isbell 1996) over the varying climatic regimes across Australia (Figure 1). All 4030 

samples were air dry and approximately 100 g subsamples were passed through a 2 mm sieve for the 

spectroscopic analysis. 
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Figure 1.  Spatial distribution of the data. The different symbols indicate their origin: CSIRO National Soil 

Archive (C), The National Geochemical Survey of Australia (NGSA) (G), state department surveys from 

Queensland (Q) and Wester Australia (WA) and other regional and field scale surveys (O). 

 

Vis-NIR spectroscopy and spectroscopic analyses 

The diffuse reflectance spectra of the 4030 soil samples were measured using the Labspec® vis-NIR 

spectrometer (Analytical Spectral Devices, Bolder, Colorado, USA) with a spectral range of 350–2500 nm. 

The soils were measured using a contact probe (Analytical Spectral Devices, Bolder, Colorado, USA) and a 

Spectralon® panel was used to obtain a white reference once every 10 measurements. For each soil 

measurement, 30 spectra were averaged to improve the signal-to-noise ratio. Spectra were collected with a 

sampling resolution of 1 nm so that each spectrum was made up of 2151 wavelengths.  
 

A continuum removal technique (Clark and Roush 1984) was used to isolate absorption features in the 

spectra. We calculated the continuum-removed (CR) spectrum by dividing the original reflectance values by 

the corresponding values of the continuum line.  
 

Multivariate statistical analysis 

The continuum-removed (CR) spectra were mean-centred and then analysed using principal component 

analysis (PCA). We used both the scores and loadings to interpret our data. To provide a more general 

description of the 4030 soil samples, the first four principal component scores (which accounted for 98% of 

the variance in the data) were clustered using the k-means algorithm. A scree plot of the percent variance 

explained by cluster was used to select the number of clusters. The spatial distribution of the clusters was 

plotted and the absorption features of the average spectrum of each of cluster were used to interpret the soil 

samples.  
 

Geostatistical analyses and mapping 

We computed experimental variograms for the scores of each of the first three principal components. We 

fitted, using weighted least squares, a number of different models to our data (spherical, exponential, 

Matern), including models that describe a nested combination of two individual variograms (Webster & 

Oliver 2001). The rationale for fitting nested models was that soil variability can often be described by a 

combination of different processes, one nested within another and acting at different spatial scales. We used 

the Akaike Information Criterion (AIC) (Akaike 1973) to select the best, most parsimonious model. The 

model with the best least squares fit to the experimental semi-variances of the scores, for the first three 

principal components, was a nested exponential model with a nugget effect. We used ordinary point kriging 

(Webster & Oliver 2001) to map the spatial distribution of each of the first three principal component scores 

across Australia on a 5 km square grid. The kriged principal component scores surfaces were clustered using 

the k-means technique. This resulted in a classed map of surface soil characteristics across Australia. 
 

Results 
Mapping the information content of soil vis-NIR spectra  

The variograms of the principal components are shown in Figure 2. The semi-variances in the first principal 

component (PC) are larger than those in the other PCs and explain a larger proportion of the spatially 

dependent variation. However, the variograms of PC two and three also demonstrate good spatial 

dependence, the nested exponential models provide a good fit (Figure 2) and the loadings spectra show 

strong and clearly identifiable features (Figure 3) that contribute to the interpretation of Australian soil. 

Therefore we retained them in the analysis. 
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Figure 2.  Experimental variograms and fitted double exponential models for (a) principal component 1, (b) 

principal component 2 and (c) principal component 3. Model parameters are given together with the Akaike 

Information Criterion (AIC). 
 

The nested variation, represented by the different variogram ranges (Figure 2), indicates that the soil and 

processes that formed it vary over different spatial scales The maps produced by kriging the first three PCs 

and their kriging variance are shown in Figure 4.  

 
Figure 3.  Loadings spectra of the first three principal components, which together account for 96% of the 

variability in the spectra 
 

The largely dominant and common feature in the three PC maps is the difference between the more 

expansive, older and more weathered landscapes in the centre and west of the country and the generally 

younger, more complex landscapes in the east  (Figure 4). The spatial distribution of the first PC (Figure 4a), 

whose (negative) loadings are dominated by haematite (Figure 3a), depict the highly weathered landscapes of 

the west, extending through to South Australia (SA), southern Northern Territory (NT), and parts of 

Queensland (Qld) and south western New South Wales (NSW). The short-range variation of the first PC is 

restricted to eastern Australia and south-western WA and appears to be associated with the clay mineralogy. 

The more dominant, longer-range component is mostly found in the centre and west of the country and is 

associated with the distribution of haematite in the more weathered landscapes (Figure 4a). The second and 

third PCs depict smaller and more subtle differences in the soil. The spatial distribution of the second PC 

(Figure 4b), whose negative loadings are dominated by absorptions that can be related to soil organic carbon 

and smectite (Figure 3b), depict the younger depositional landscapes of eastern Australia, where the shorter-

range variation predominates. The negative loadings of the third PC map (Figure 4c) depict the spatial 

distribution of soils with abundant amounts of smectite. The positive loadings depict coastal soils with higher 

amounts of soil organic matter (Figure 4c). 
 

Figure 5 shows the surface soil class map derived from the clustering of the three PC maps in Figure 4. 

Class one represents highly weathered soils that contain abundant amounts of haematite and kaolinite (Figure 

5a). Class two represents coastal soils and the agricultural soils of the Australian wheat-belt. Class three soils 

are found largely inland of the previous class and extend throughout south-western Qld, north western NSW 

and Victoria (Vic) and north eastern SA. Class four soils are found across the northern part of the Northern 

Territory and Queensland and south-eastern NSW and south-western WA and appear to coincide with the 

wetter areas of Australia. The classed surface soil map (Figure 9a) shows that the information acquired from 

the spectra is similar to that depicted by soil classifications available from soil surveys (Figure 9b). 
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Figure 4. Mapping the information content of Australian soil vis–NIR spectra. Kriged maps (top row) and their 

variance (bottom row) for (a) principal component 1, (b) principal component 2 and (c) principal component 3. 

 

               
Figure 5.  (a) Surface soil class map derived from the clustering of the principal component maps in Figure 4. 

Class 1 is represented by the orange, class 2 by the red, class 3 by the blue, and class 4 by the green. (b) The 

Australian Soil Classification  map of soil orders (Isbell 1996). 

 

Conclusions 
In this paper we have shown that: (i) a vis–NIR diffuse reflectance spectrum is an integrative, multi-

parameter measure of the soil that contains information on its fundamental constituents: mineral and organic 

matter and water, (ii) that principal component analysis combined with geostatistics can be used to describe 

the information content of the spectra and map soil and (iii) therefore vis–NIR spectra can be used for soil 

classification. We demonstrated this by mapping Australian soils. 
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Abstract 
Soil salinity is widespread in a variety of environments, and land managers need to map its severity and 

extent both laterally and vertically from sample data. We have explored the use of apparent electrical 

conductivity (ECa) measured with an EM38 conductivity meter and Tikhonov regularization to obtain 

conductivity profiles. We then used geostatistics to predict the conductivity between sampling points in 

coastal saline paddy land in the Yangste delta of China.  

 

The ECa matched closely the directly measured conductivity (ECb) using the WET sensor system near the 

surface of the soil. Discrepancies increased down the profile to a maximum at about 80 cm, below which 

they converged again, and were judged small enough for monitoring purposes and to map soil salinity. The 

ECa was determined with the EM38 at 56 positions in an adjacent field at 10 depths down to 110 cm, and the 

data analysed geostatistically. A linear model of coregionalization was used to cokrige the ECa on a fine grid 

from which maps were made. The results revealed an irregularly shaped patch of salinity, serious at the base 

of the soil but of diminishing size and severity nearer to the soil surface.  

 

Keywords 

Saline soils; EM38; electrical conductivity; cokriging. 

 
Introduction  
Soil salinity, both natural and man-made, is widespread in the world and presents problems for agriculture. It 

retards the growth of crops and constrains production. In severe cases salinization causes land to be 

abandonned. Salts can rise to the soil surface by capillary transport from the water table and then accumulate 

as a result of evaporation. In many places they are concentrated by irrigation with salty water or by over-

irrigation and the raising of saline ground water. According to Yu et al. (1996) the salt profile of the upper 

100 cm is a good diagnostic of the suitability of the soil for arable crops. So, anyone assessing soil for 

farming needs to consider simultaneously the lateral and vertical variation in salt concentration. He or she 

needs to be able to describe and map three-dimensional distributions.  
 

The three-dimensionality of soil is widely acknowledged. Thousands of papers and reports record variation 

down profiles. They are often linked to soil surveys, the principal results of which are displayed qualitatively 

as two-dimensional maps. Again there are thousands of them. In recent years geostatisticians have taken a 

more quantitative approach; they have analysed the lateral variation of individual properties and mapped 

them. But even when they have recognized vertical variation they have usually treated the soil as a series of 

independent layers; see, for example, Oliver and Webster (1987) and Samra and Gill (1993). Van Meirvenne 

et al. (2003) were exceptional in this respect; they analysed the three-dimensional distribution of nitrate in 

the soil in an agricultural field. Their study and later one by He et al. (2009) are the only ones of which we 

know in soil science.  
 

We can think of several reasons why pedometricians have been reluctant to study soil properties in three 

dimensions at the field scale. One is the difficulty of visualization; how do you display the results of three-

dimensional interpolation? Another is the gross anisotropy, with differences in scale of several orders of 

magnitude between lateral and vertical distances. Strong drift in the vertical dimension adds to the 

difficulties. Finally, even if you overcome those difficulties you have the cost of obtaining data to consider; 

the cost of drilling or inserting probes into the ground at numerous sampling points has been prohibitive in 

the agricultural context.  

Surveys of salinity, however, have been revolutionized by the development of sensors based on 

electromagnetic induction (EM) with equipment such as the EM31 and EM38 (McNeill 1980). The EM38 is 
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the more useful for agricultural applications because its penetration to 1.5 m corresponds roughly with the 

rooting depth of many crops, and it is much used. The technique has a further attraction, for by using a linear 

model of the response of the instrument and second-order Tikhonov regularization one can estimate 

conductivity profiles (Borchers et al. 1997; Hendrickx et al. 2002).  
 

We have explored the combination of the Tikhonov regularization of EM38 data and geostatistical analysis 

to estimate the soil’s ECa in three dimensions in a coastal region of China where salinity is a problem. We 

describe our experience below.  
 

The region, sampling and measurement  
Study area  

The land in the coastal zone of Zhejiang Province south of China’s Hangzhou Gulf of the Yangtse delta is 

formed of recent marine and fluvial deposits. The soil is dominantly light loam or sandy loam with a sand 

content of about 60%. It is also saline, with large concentrations of Na and Mg salts (in many places >1%). 

For this study we chose a field of 2.22 ha that was reclaimed in 1996 and used for paddy rice. Its coordinates 

are 30°9′N, 120°48′W. Figure 1 shows it as ‘Field A’ with its neighbor ‘Field B’ and its general location.  

 
Figure 1.  Location of the region studied and the positions of the sampling points in the field. 
 

Sampling and measurement  

We measured ECa with the Geonics EM38 conductivity meter at 56 places in Field A roughly on a grid at 

intervals of approximately 23 m; again see Figure 1. We did so after the rice had been harvested in 

December 2006. Each position was georeferenced by a GPS. At each we took 96 EM38 readings, as follows.  
 

The EM38 device was placed with its centre over the grid node. Readings were made on two instruments, 

one with the coils configured horizontally (EMH) and the other vertically (EMV). Each instrument was then 

raised, starting from 0, when it was on the ground, to heights 10, 20, 30, 40, 50, 60, 75, 90, 100, 120 and 150 

cm above the soil surface. To validate the measurements from the EM38 we dug pits 110 cm deep at nine 

positions in the adjacent Field B. In each pit we measured the bulk electrical conductivity (ECb) using the 

WET sensor system at 5, 15, 25, 35, 45, 55, 67.5, 82.5, 95 and 110 cm below the surface. In this way we 

obtained accurate data of electrical conductivity down the soil profile against which to judge the worthiness 

of the EM38 readings.  
 

At harvest time, on 20 October 2006, we collected the yield of rice plants at each of 192 sampling points in 

Field A (see Figure 1 for their positions) for compare the distribution of soil salinity.  
 

Conductivity profiles  
Linear model and its inversion  

McNeill (1980) described the linear model used to predict the response of the EM38 instrument at a height 

above the ground from the electrical conductivity down the soil profile. The response of the instrument 

consists of a system of two Fredholm equations: 

0( ) ( ) ( )HHm h u h u duφ η∞= +∫                                                                   (1) 

and  

0( ) ( ) ( )VVm h u h u duφ η∞= +∫                                                                   (2) 
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In these equations the subscripts H and V denote respectively the horizontal and vertical orientations of the 

coils in the instrument, and mH(h) and mV(h) represent the measured values at height h above the ground with 

those two orientations. The quantity η(u) is the conductivity at depth u in the soil, and φH and φV, the 

sensitivities for the horizontal and vertical orientations of the coils, are given by McNeill (1980) . 

 
Procedure and results  

Borchers et al. (1997) have provided code in MATLAB for the computations. We used their code for the 

linear model, Equations (1) to (4), to predict the EM38 readings at heights 0, 10, 20, 30, 40, 50, 60, 75, 90, 

100, 110, 120 and 150 cm above the ground and then to invert the predictions by the Tikhonov 

regularization. In this way we obtained apparent conductivities, ECa, at the same depths as those at which we 

measured the bulk conductivity, ECb, by the WET sensor, i.e. at 5, 15, 25, 35, 45, 55, 67.5, 82.5, 95 and 110 

cm.  
 

Figure 2 shows the calculated apparent conductivities, ECa, and compares them with the measured bulk 

conductivities, ECb, for the two profiles selected from all profiles. The conductivities varied greatly with 

depth; ECb ranged widely from 15 to 296 mS m
-1

 

. Most profiles became increasingly salty with increasing 

depth, though in several the conductivity was greatest in the upper part of the subsoil. There is reasonably 

close agreement between ECa and ECb for most of the profiles, similar to that reported by Borchers et al. 

(1997). There are, however, fairly large discrepancies for others.  
 

 
Figure2.  Profiles of mean bulk electrical conductivity ECb and conductivity predicted by Tikhonov 

regularization from EM38 measurements 
 

Hendrickx et al. (2002) presented similar results showing that measurements made with the EM38 followed 

by Tikhonov regularization gave results that matched well the measured conductivity for values less than 100 

mS m
-1

. They also found that a more elaborate non-linear model gave somewhat closer matches, but the 

improvement was so small that they judged it not worth the much greater computational demand.  
 

Given the above results and the experience of Hendrickx et al. we decided to use the measurements from the 

EM38 and the Tikhonov inversion of the linear model to obtain values of the apparent electrical 

conductivity, ECa, to characterize the salinity in Field A. We use these values to map the salinity, and we 

describe the procedures and results in the next section.  
 

Geostatistics  
The maxima, means and medians of ECa at the 56 sites in Field A increase with increasing depth; there is a 

strong trend in the vertical dimension. In fact, there appears to be an almost linear trend at every sampling 

point. Further, there is strong correlation between all pairs of depths, especially between adjacent layers. In 

these circumstances it seems that the best way to map the salinity is to treat the ECa at the 10 depths as 10 

coregionalized variables and to fit a linear model of coregionalization to their variograms.  

All auto-and cross-variograms for the 10 depths were computed by the usual method of moments. For the 10 

depths this gave 10 autovariograms and 35 cross-variograms. Variation appeared isotropic, and so we 

represented the lag in distance only and incremented it at 10-m intervals. The auto-variograms appear as 

sequences of black discs. They are remarkably similar in form; only the scale of variance changes 

appreciably. The cross-variograms are also similar, and do not merit display.  
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We had then to choose and fit a linear model of coregionalization to the complete set of variograms. A power 

function would be the most suitable model, and so that plus a nugget variance provided the basic structures.  

The next step was to estimate the ECa at all 10 depths. Although all depths were sampled at all 56 positions 

in the field we cokriged using all data to provide coherence. We computed block estimates for 5 m × 5 m 

squares at 5-m intervals over the whole field.  
 

As above, we have to overcome the problem of vizualizing the kriged estimates in the three dimensions. 

Figure 3 is our solution in which we view the layers obliquely from above in sequence, starting at the base 

110 cm deep and adding one layer at a time and showing the vertical variation on the southern and eastern 

faces of the field as the layers are added.  
 

From Figure 3 we can see an irregularly shaped patch of saline soil (large ECa) in the lowest layer, the 

bottom left graph. The patch diminishes in extent and severity higher in the soil.  

 
Figure 3.  Block-kriged estimates of ECa in Field A at 10 depths from 110 cm, left, to 5 cm top right. Note the 

way that the large conductivity in the irregular patch at 110 cm diminishes upwards.  
 

Conclusions  
In the rice paddy we studied the Tikhonov inversion of the linear model from measurements made with the 

EM38 compared reasonably accurately with the direct measurements made with the WET sensor, and it gave 

us confidence in the use of the EM38 for mapping salinity to at least 1 m at the field scale. The strong 

correlation of ECa down the profile and the consequently strong coregionalization enabled us to map 

conductivity as ECa by cokriging 5 m × 5 m blocks in 10 layers down to 110 m with small errors. The result 

shows the potential of the EM38 device for land management and specifically for rapidly identifying and 

mapping soil that needs remediation or should not be planted with rice.   
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Abstract 
The ability of thermal infrared (TIR) spectroscopy to characterise mineral and textural content was evaluated 

for soil samples collected in the semi-arid environment of north-western Queensland, Australia. Grain size 

analysis and separation of clay, silt and sand sized soil fractions were undertaken to establish the relationship 

between quartz and clay emissivity signatures, and soil texture. Spectral band parameters, based on thermal 

infrared specular and volume scattering features, were found to discriminate fine clay mineral–rich soil from 

mostly coarser quartz-rich sandy soil, and to a lesser extent, from the silty quartz-rich soil. This study found 

that there was the potential for evaluating soil mineral and texture content using TIR spectroscopy.  
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Introduction 

Mapping soils for their composition and physical characteristics typically involves extensive field work and 

laboratory analysis of samples. Recent developments in proximal spectral sensing techniques offer the 

possibility of increasing the speed, and reducing the cost of interpreting soil samples. In particular, thermal 

infrared spectroscopy has been related to soil mineralogy and textural information (Salisbury and D’Aria 

1992a). Spectral libraries, consisting of bidirectional TIR reflectance measurements, reveal diagnostic 

absorption features of many silicates (Salisbury and D’Aria 1992b). Proximal laboratory spectral 

measurements within the visible-near infrared and shortwave infrared wavelength region can identify clay, 

sulphates and carbonate minerals (Clark et al. 1992), common within soils. However discriminating the 

quartz or silicate content of soils requires spectroscopy within the mid- (e.g. 3-5 µm) and more commonly, 

the thermal- infrared wavelength regions (e.g. 7-14 µm) (Salisbury and D’Aria 1992b). This study was part 

of a much larger project to map surface minerals/chemistries using airborne hyperspectral and satellite 

ASTER imagery, applying visible, near infrared and shortwave infrared sensing (proximal and airborne) 

techniques (Cudahy et al. 2010).  In particular this paper describes a study of thermal infrared emissivity 

measurements of soil samples from near Tick Hill (21
o
35’S, 139

o
55’E), to investigate quartz/clay content 

and texture. 

 
Method 

TIR spectra were measured from eight soil samples using the Designs and Prototypes microFTIR
TM

 102 

model (http://www.dpinstruments.com/). Soil samples were oven heated overnight at 60
o
C to obtain a 

consistent dryness. MicroFTIR
TM

 emission measurements were acquired from heated soil samples within 

ceramic crucibles, also at 60
o
C, from an approximate 20 mm field of view and using 16 scan integrations. 

Measurements were calibrated to radiance units (W/m
2
/sr/µm) using hot and cold black body measurements 

set to 65
o
C and 30

o
C respectively. Background radiance (e.g. “downwelling”) was removed by measuring 

the emission of a brass plate at room temperature (via a Pt thermocouple). Temperature-emissivity separation 

of the acquired radiance measurements was calculated using in-house software developed by CSIRO (Green, 

pers. comm.). Each soil sample was also analysed for mineralogy using XRD. The Tick Hill samples were 

analysed for grain size fractions, assuming traditional soil definitions: clay (< 2µm), silt (2-20 µm) and sand 

(20µm-2mm) by CSIRO Land and Water (http://www.clw.csiro.au/services/analytical/), using the traditional 

pipette method (McKenzie et al. 2002). These samples were firstly prepared by chemically removing salts, 

organic matter, and ferric iron (McKenzie et al. 2002). The resulting sand fraction was also separated 

between 20-60µm and 60µm-2mm. Each grain size fraction was measured twice for emission by the 

microFTIR
TM

. The resulting emissivity signatures were imported into CSIRO software for processing 
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proximal spectral data, “The Spectral Geologist
TM

 “ (TSG
TM

, http://www.thespectralgeologist.com/). 

Interpretation of TIR spectroscopy was assisted by comparison with the Johns Hopkins University (JHU) 

TIR biconical reflectance spectral library (Salisbury and D’Aria 1992b), converted to approximate 

“emissivity” signatures, assuming Lambertian behaviour (e.g. emissivity=1- reflectance). 

 
Results and discussion 

XRD analysis of the Tick Hill soils revealed that their mineralogy consisted of quartz, smectite, kaolinite and 

minor amounts of illite. MicroFTIR
TM

 emissivity signatures of raw soil samples, MI122 and MI128, 

indicated the presence of quartz and clay minerals (e.g. kaolinite/smectite) (Figure 1). Although the quartz 

“reststrahlen” feature between 8 – 9.5µm is reduced in the raw soil samples compared to the JHU library 

spectra, the 8.62 µm feature remains distinctive. Likewise the 9.0 µm kaolinite feature is less distinctive in 

the raw soil mixture although the 9.5 µm feature remains.  

 
Figure 1.  Example MicroFTIR

TM
 emissivity spectra of Tick Hill soil samples and JHU spectral library 

(Salisbury and D’Aria 1992b) highlighting the presence of mixtures of  clays and quartz minerals within the 

samples. 

 

The corresponding emissivity signatures for the various grain size fractions of samples MI122 and MI128, 

show a trend of increasing quartz reststrahlen 8.62 µm and decreasing clay 9.5 µm features, with increasing 

grain size (Figure 2). Also within the 10.5 – 12 µm wavelength region, “volume” scattering quartz features 

are associated with the 2-20 µm and 20-60 µm soil fractions (Salisbury and Eastes 1985) (Figure 2). 

 
Figure 2.  Example MicroFTIR

TM
 emissivity spectra of grain size separated Tick Hill soil samples showing 

diagnostic mineral and textural related spectral features. 
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By comparison, the reststrahlen quartz feature is associated with specular scattering from coarser quartz 

grains (Salisbury and Eastes 1985). Several samples, including the displayed MI128, also indicate small 

amounts of kaolinite within the 2-20 µm and 20-60 µm grain size fractions, as shown by their 9.0 and 9.8 µm 

spectral features (Figure 2).  

 

The TSG
TM

 software was customised to target those emissivity features associated with kaolinite/smectite, 

quartz, and its volume scattering fine grained variation. In particular, band ratio parameters were devised to 

estimate the coarser quartz content (Emiss8632 / Av8383,8897) where Emiss8632 is the mean microFTIR
TM

 

emissivity (±30 nanometres, nm) and Av8383,8897 is the average of the associated emissivity values at 8383 

and 8897 nm. Similarly a band ratio parameter was devised for clay content (EmissAv9178,9852 / 9500) and 

the effects of fine quartz volume scattering, Qtz_scat._index (e.g. EmissAv10318,12279)/ (Emiss(1132+11664)). 

The results of these band parameters for each Tick Hill soil fraction, processed using TSG
TM

, are shown in 

Figures 3, 4 and 5. Figure 3 shows that there is an approximate increasing trend in the quartz spectral 

parameter with increasing grain size. A higher quartz volume scattering behaviour for the mid-sized fractions 

(e.g. 2-60µm) is shown by the auxiliary colour coding (green to red, Figure 3). Figure 4 shows an inverse 

trend between the clay and quartz spectral parameters however a high clay value can still appear present 

within silty fractions (e.g. cyan coding, Log ~ 1.0 or ~ 10 µm) and some coarser fractions (e.g. red) exhibit a 

high clay spectral parameter. Developing predictive clay % algorithms is complicated by such residual clay 

content within separated soil fractions. However Figure 5 suggests predicting clay mineral content within 

fractions less than 10 µm with low quartz content (e.g. blue) is possible although finer soil fractions are 

required. Applying these spectral parameters to the eight raw soil samples did not reveal clear trends with 

grain texture although the number of samples limited this interpretation. 

 

 
Figure 3.  Quartz content spectral parameter versus Log of the grain size fraction, colour coded by the estimated 

effect of fine quartz volume scattering (e.g. red = high scattering associated with fine quartz), showing an 

approximate decrease in quartz content with decreased grain size.  

 

 
Figure 4.  Relationship between quartz and clay content spectral parameters, colour coded by the Log of the 

grain size fraction (e.g. red : 60 µµµµm-2 mm; blue : < 2µµµµm), showing the inverse relationship between TIR 

interpreted quartz and clay mineral contents.  
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Figure 5.  Relationship between the clay content spectral parameter and the Log of the grain size fraction, colour 

coded by the quartz content spectral parameter (e.g. low quartz content : blue, high quartz : red). 

 
Conclusions 

These initial results show the intimate connection between mineralogy and texture when using thermal 

infrared spectroscopy to investigate soils. In particular, coarse and fine grained quartz components have 

distinct TIR spectral features. The spectral results also indicate that residual clay mineral content may still be 

present, even with fractions obtained from thorough grain size separation techniques, and potentially bias the 

interpretation of “clay” content if based on textural analysis alone (e.g. < 2µm). Proximal spectral 

measurements indicate the potential to analyse for clay mineral content, as distinct from clay sized soil 

content. This study indicated the potential for evaluating soil mineral and textural characteristics using TIR 

spectroscopy. Further investigations using a larger number of soil samples are recommended to establish the 

best approach to extract TIR spectral parameters related to mineralogy and textural characterisation. Such 

studies would also be assisted by loss on ignition heating and shortwave infrared spectral techniques for 

estimating clay content (Cudahy et al. 2005). 
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Abstract 
A variety of analytical methods have been used for the study of different soils of Argentina. These methods 

are based on the general physicochemical properties of the material under study such as its oxidation-

reduction capacity, the presence of ionisable functional groups and, its migration in an electric field among 

other. The determination of the activity of some soil enzymes was analyzed in air dried soils samples. 

The samples were oxidized by a new heterogeneous phase, catalytic oxidation, using chemically modified 

electrodes with bimetallic films of metalloporphyrins. The results were analyzed by capillary electrophoresis 

(CE) and by gas chromatography- mass spectrometry (GC-MS). 

 

Different extraction methods of soil humic components were compared. The usefulness of separation by gel 

exclusion (SEC) of humic acid was also evaluated. Infrared spectroscopy with Fourier transform (FTIR) 

spectrometry was done for soils, humic acid and in the fractions obtained by SEC. In addition, redox 

titrations of the isolated humic acids were also performed. 

 

Key Words 
Soils, enzymatic assays, catalytic oxidation, gas chromatography-mass spectrometry analysis, capillary 

electrophoresis analysis, FTIR.  

 

Introduction 
Analysis of soils has acquired increasing importance in recent years, given the economic importance of this 

material, which affects agriculture and environment. Both, soil and humic acids (HA), represent very 

complex samples and, their analyses constitute a true challenge for analytical chemists. There are many 

reports in the literature regarding the analysis of HA and soil and each publication brings something new, 

mainly due to the characteristics of the sample under study (soil and/or humic substances). In recent years 

there has been an increasing work using sophisticated instruments which are not available to all laboratories, 

particularly those in developing countries. It is very important for countries which devote large areas to 

agronomic activities, to get to know the state of the soil in a short time and at a low cost. Therefore, the aim 

of the present work was to evaluate the current analytical techniques as well as their potential in the analysis 

of soils and/or humic substances in Argentina. 

 
Methods 
Soil samples from three different geographical areas of Argentina were analysed. The soil samples were air 

dried and 2 mm sieved.  

 

Enzymatic assays 

The urease activity was determined as the amount of NH4
+
 released from 5 g soil after the incubation for 120 

min at 37 °C with urea (6 %) in 0.95 M citrate, pH 6.7. The product formed (indophenol blue) by the reaction 

of the NH4
+
 released and the phenol and hypochlorite in the alkaline medium was measured by 

spectrophotometry. 

 

The phosphatase activity was evaluated by spectrophotometry as the amount of p-nitrophenol (PNP) released 

from 5 g soil after incubation at 37 °C for 10 min with the substrate p-nitrophenyl phosphate in MUB buffer 

pH 6.5 for acidic phosphatase and in MUB buffer pH 11.0 for basic phosphatase. Then 2 M CaCl2 was added 

and the PNP released was extracted with 0.2 M NaOH. 

 

The cellulose activity was determined in 5 g soil with carboxymethyl-cellulose (0.7 %) as substrate by 

incubating for 24 h at 50 °C, in 2 M acetate buffer, pH 5.5. Then the glucose released was incubated with (a 

mixture of 1.25 mM 4-aminophenone, 2.75 mM phenol, ≥ 3000 U/I glucosidase, ≥ 400 U/I peroxidase, pH 

7.4) for 10 min at 37 °C. The compound generated was determined by spectrophotometry.  
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Invertase activity was determined similarly to cellulose activity except that sucrose was used as substrate and 

the incubation time was for 3 h. 

 

For each enzyme, the activity was quantified using calibration curves corresponding to standards incubated 

with each soil sample under the same conditions. Measurements were performed by triplicate.  

 

Infrared spectroscopy with Fourier transform (FTIR) spectroscopy 

For all the samples analyzed the infrared spectrum was performed on a KBr pellet.  

 

Catalytic oxidation 

A gold electrode modified with polymers of metalloprotoporphyrins was used. The synthesis of Me-

protoporphyrins was performed following the Adler procedure (Adler 1970) and the Fe
III

protoporphyrin IX 

following the Smith procedure (Smith 1975). The electropolymerization of metalloprotoporphyrins were 

carried out in 0.1 M tetrabutylammonium perchlorate - dichloromethane by potential sweep between 0.00 

and + 1.50 V (vs. Ag|AgCl) at 0.05 Vs
-1

, five cycles; for all the polymers except for Fe
III

protoporphyrin IX 

(0.00 to + 1.2 V). An aliquot of commercial HA in 50 mM phosphate buffer pH 5.00 or pH 7.00 centrifuged 

and filtered through a 0.45 µm membrane filter, was transferred to a glass tube and a gold electrode was 

immersed in the solution.  

 

A 0.5 g soil sample was transferred to a 50 mL flask and a few milliliters of 0.5 M NaOH added, and after 15 

min, the volume was completed with 50 mM phosphate buffer pH 7.00. The suspension was centrifuged and 

filtered through a 0.45 µm membrane filter. An aliquot of 3.5 mL of the filtered solution was transferred to a 

glass tube, 0.5 mL of 80 mM H2O2 was added and a gold electrode was immersed in the solution. At 

different time points, the solution was analyzed by gas chromatography (GC) and capillary electrophoresis 

(CE). 

 

Gas chromatography-mass spectrometry analysis 

A HP-5MS (5%)-diphenyl-(95%)-dimethylsiloxane capillary column (30 m x 0.25 µm; Supelco) was 

employed and the gas carrier was helium (99.995 % pure). The column was initially maintained at 70 °C for 

2 minutes, and then the temperature was increased to 230 °C at a rate of 8 °C/minutes, which was held until 

the end of the analysis. The mass spectrometer operated in the range of m/z 50 -550 amu. An aliquot of the 

aqueous solution was acidified with 6 M HCl and extracted with a sixth volume of chloroform, and the 

chlorophormic phase was separated by chromatography. 

 

Capillary electrophoresis analysis 

Capillary zone electrophoresis mode with UV detection was employed. A fused silica capillary of 60 cm 

total length x 75 µm i.d. was used. The background electrolyte was a 15 mM borate buffer, pH 10.0. The 

voltage was 20 kV and the analysis was carried out at room temperature. All the solutions and samples were 

filtered through a 0.45 µm membrane filter previous to the introduction into the apparatus. The sample was 

introduced in mode hydrostatic for 30 s. Detection was performed at 214 nm. 

 

Isolation and purification of humic acids. 

The soil was washed twice with distilled water to extract the non-humic, water-soluble substances. Then, the 

extraction was carried out with 0.5 M NaOH by constant shaking under a N2 gas atmosphere in sealed tubes 

for no more than 24 hours. Following centrifugation for 25 min at 3000 rpm, the supernatant was acidified 

with 6 M HCl (pH 0.5- 1) to precipitate the HAs. Then, the HAs were purified by dissolution in 0.1 M 

NaOH, centrifugation and precipitation of HAs by acidification with 6 M HCl. Finally, the suspension 

containing the HAs was dialyzed against distilled water until free of chloride and freeze-dried. 

 

Gel permeation chromatography (SEC). 

The chromatography was made by passing a solution of HAs in mobile phase (0.02 M borate buffer, pH 9.2) 

through a glass column (60 cm x 1.5 cm i.d.) containing Sephadex G-75 or Sephacryl S-200 High 

Resolution. The fractions were collected every 6 and 4 minutes respectively. The absorbance was monitored 

at 280 nm. In order to obtain enough material, each chromatography was repeated several times. The fraction 

of every HA eluted with the same volume of mobile phase, was combined and acidified to obtain HA and 

then was treated in the same way as the AH extracted from soils. 
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Other determinations. 

Redox titrations were performed of the HA isolated from each soil.  

 

Results 
The biological activity in cultivated soil shows a significant increase of the enzymatic activity, fundamental 

catalytic chemical reactions are essential to plant nutrition (Zornoza 2006). Enzymatic determinations were 

conducted on dry soil (Table 1). This allows working with more homogeneous samples and preserves them 

without any chemical changes. Zornoza et al. determined enzyme activities for urease, phosphatase and 

glucosidase, in dry soil and in soil rewetted for different times and achieved satisfactory results. These 

results are encouraging, since if they are combined with the other methods described, they can be used as 

early markers of soil deterioration (Alexander 1980).  

 
Table 1. Enzymatic determinations 

Soil Urease  

(µmol/g h) 

Sacarase  

(µmol/g h) 

Cellulase 

(µmol/g) h 

acidic 

phosphatase 

(µmol/g h) 

Basic 

phosphatase 

(µmol/g h) 

A 1.6 1.6 nd 2.5 0.7 

B 2.0 1.7 nd 1.8 0.9 

C 1.7 nd nd 1.7 0.6 
*nd= no detectable 

 

The application of monometallic and bimetallic complex of porphyrins to catalyse the oxidation of HA and 

soil samples has proved very useful (Figure 1), getting the best results with polymers of Coprotoporphyrin 

films. The mild oxidation of humic substances with catalysts redox showed very promising results, since a 

relatively simple profile in GC and CE was obtained, providing the ability to categorize the types of soil and 

possible contamination.  

 
Figure 1.  Oxidative degradation of two Argentine soils at different times: A.            4.8 h;             38.4 h;  

B:              7.2 h;             31.2 h. 

 

Conclusion 
Classical analytical chemistry is still very useful for the analysis of complex samples with variable 

composition such as the material studied in the present work. It can give important information by itself and 

can be a very useful complement to the results obtained with other techniques. So far, there is not a sole 

technique that can provide all the information that we need to know about the soils Therefore a lot of work is 

needed to assemble the different analytical techniques in order to obtain the required information. 
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Abstract 
Site specific crop management is largely dependent upon the provision of adequate data and information 

including climate, disease and soil to support decision making. Readily available and rapidly sensed soil 

properties including proximally sensed and terrain derivatives were explored for this purpose. Proximal 

datasets including EM38, EM31, γ-ray spectra and terrain derivatives were collected in 2006/2007 from five 

paddocks across North West Victoria. These paddocks were selected to represent major soil/landscape 

relationships observed in this region. Statistical analysis, including spatial autocorrelation, was undertaken to 

examine predictive capabilities of these datasets. The significant explanatory variables for field capacity 

(FC) and permanent wilting point (PWP) were not consistent across the paddocks. Gamma ray (γ-ray) 

spectrometry and elevation were proven to be significant variables in the spatial modelling of soil moisture 

retention properties. 
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Introduction 
Knowledge of the variability in key soil properties, such as plant available water capacity, will enable more 

precise targeting of inputs to match anticipated crop yield, and be useful in crop modelling applications such 

as APSIM (Keating et al. 2003). Mapping these soil properties has value to advance management decisions 

while optimising water use efficiency in the Australian grains industry. Proximal sensing technologies, 

including electromagnetic induction (EMI) and γ-ray spectrometry are efficient tools and methods to collect 

data that may be used to predict soil properties for modelling and monitoring applications. 

 

Proximal soil sensing approaches used for site specific management purposes (e.g. fertiliser application) in 

north west Victoria has generally comprised EMI surveys to map soils and to target sensitive crops to 

particular paddocks (Jones et al. 2008). Across the region, dryland crop yields have been strongly influenced 

by the factors of climate, soils and topography (Rowan and Downes 1963). The determination of soil 

moisture retention properties including plant available water (PAW) and plant available water capacity 

(PAWC) by EMI techniques have only recently been explored (Robinson et al. 2009). Gamma ray (γ-ray) 

spectrometry for soil measurement can be undertaken either as airborne or vehicle-mounted systems that 

capture the γ-radiations (scintillations) from soil materials that contain radioactive minerals and isotopes. 

Potassium, thorium, uranium and total count (records the overall radioactivity levels within the 256 channels 

of γ-ray spectrometers) are the primary derived datasets from γ-ray sensing systems. Ground-based γ-ray 

spectra investigations of soils have established relationships with soil parameters including clay content and 

mineralogy (Taylor et al. 2002). 

 

The relationships between grain yield and proximal sensors have been quantified for soils and landscapes of 

the southern Mallee (north west Victoria) by Robinson et al. (2009). This paper investigates the relationship 

between proximal sensed, terrain-derived datasets and soil hydraulic properties of permanent wilting point 

(PWP) and field capacity (FC). This study is complementary to Rab et al. (2010) and Fisher et al. (2010) 

who quantified soil-water retention properties of dryland cropping soils using traditional laboratory and 

inverse modelling of multi-steps outflow methods. 

 

Methods 
The study area is located approximately 450 km north-west of Melbourne, in the southern Mallee and 

northern Wimmera regions of Victoria, south eastern Australia. Five paddocks were selected to represent the 

major soil and landform features of the Mallee and northern Wimmera identified in existing soil and land 

resource descriptions contained in Rowan and Downes (1963) and Robinson et al. (2006). Landscapes 
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include a series of NNW/SSE trending ridges, known as stranded beach ridges, with self-mulching Vertosols 

(Isbell 2002) derived from late-Pleistocene to Holocene redistribution of inter-ridge lacustrine sediments. 

These clay plains and ridges comprise gilgaied plains of gentle relief, with ridge slopes and crests (<5%) and 

depressions common. Plains on which low hummocks occur (Rowan and Downes 1963) as clusters up to 3 

km across contain Hypercalcic Calcarosols (Hypercalcic Calcisol) and Grey Vertosols (Haplic Vertosol), 

with Red Sodosols (Haplic Solonetz, Abruptic) located on the eastern slopes of hummocks. 

 

Proximally sensed geophysical and terrain data were acquired in December 2006 using a mobile survey 

system (MSS). Positional data was logged on a 1 s interval using a NavCom Starfire™ DGPS sensor (SF-

2050G™) with a real-time horizontal accuracy of <20 cm and a vertical accuracy <50 cm. Bulk soil ECa was 

measured using a Geonics™ EM38DD sensor and an EM31-MK2 sensor. An Exploranium™ GR320 

spectrometer (GPX256) with a 4.2 litre thallium-activated sodium iodide detector crystal was used to collect 

γ-ray spectra. A DEM was generated for each of the five paddocks using elevation data (mASL) from the 

DGPS. Topographic variables including profile curvature, planimetric curvature, slope gradient (%), slope 

aspect (0–360
o
), and relative elevation (height of cell relative to a defined radius of surrounding terrain cells) 

using 15, 30 and 50 m radii were derived for these DEMs. 

 

Soil samples from 100 locations per paddock, to a depth of 110 cm, were collected using a systematic 

sampling approach on a grid that aligned with proximally sensed and topographic derivatives. Soil samples 

were cut into five depth increments of 0–20, 20–40, 40–60, 60–80 and 80–110 cm. Soil-water content at –

1500 kPa (PWP) and −33 kPa (FC) matric water potentials were determined for 0-20 cm and 40-60 cm 

depths using disturbed samples (2 mm sieved sample) on a 1-bar and 15-bar ceramic plate in a pressure plate 

apparatus. 

 

The significance of spatial correlation for FC and PWP was determined using the Moran’s I statistic (Moran 

1948). The significance of spatial autocorrelation (a measure of correlation between adjacent observations by 

characterizing their weighted covariance in two-dimensional space, and comparing this against the 

population variance) in the measured parameters was determined using this analysis technique. Where there 

is significant spatial correlation, statistical modelling must include this in the error structure. A Conditional 

Auto Regressive (CAR) error model was used in our spatial regression analyses (S+SpatialStats (S-PLUS : 

Copyright (c) 1988, 2002 Insightful Corp.)). Coefficients of determination (R
2
) for these models were 

determined by the method of Nagelkerke (1991). 

 

Results  
The explanatory variables that had a significant effect on FC and PWP at the two depths (0–20 and 40–60 

cm) for the five sites and the combined analysis is presented in Table 1.  

 
Table 1. Variables that had a significant effect (p<0.05) on FC and PWP in each of the five paddocks (1, 2, 3, 4 

and 5) and the combined analysis (C). Note, negative associations are shown in red italics, positive associations in 

green. 

Variable
1 

FC (0–20 cm) FC (40–60 cm) PWP (0–20 cm) PWP (40–60 cm) 

Elevation 1, 2, C 4, 1, 2, C 4, 1, 2, C 4, 2,C 

RAD_TC 5, 4, 3, 2, C 5, 3, C 3, C 3, C 

RAD_K 1   1 

RAD_U 3 2, C 5, 3  

RAD_TH  5, 3, C 5 C 

EM38condv
2 

4 4, 1 4 1 

EM38condh
2,3 

 5  1 

EM31cond 4, C 4 5, 4, C  

Aspect 5, 1 5, 1 5, 3 5 

Slope 1 3   

Plancurv
4 

5, 4, C  4, C  

Relev30 1 4, 1 1 2 

Relev60  1 1 1, C 

Relev100 1, 2 2 4, 2 5, 4, 2 

1 Aspect, Slope, Curv and Procurv were modelled as 3 level (a < b <c) factors 

2 This variable was not recorded for Paddock MM 

3 This variable was not recorded for Paddock DJ 

4 This variable had only 5 non zero values at RD and was omitted from that analysis. 
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Results from this analysis (Table 1) show that no explanatory variable was significant (p<0.15) at all five 

paddocks, for either FC or PWP or depth range (0–20 or 40–60 cm). The radiometrics total count (RAD_TC) 

was significant at four of the five paddocks for FC0–20 but was only significant at two paddocks for FC40–

60 and a single paddock for PWP0–20 or PWP40–60. The simple measure of elevation was significant at 

three paddocks for FC40–60 and PWP0–20 and two paddocks for FC0–20 and PWP40–60. The EMI 

measurements (EM38condv, EM38condh, EM31cond), which are currently quite widely used for predicting 

spatial variability for precision agriculture, were only significant explanatory variables for the soil water 

parameters at two paddocks or less. Using the spatial linear models with the significant (p<0.15) explanatory 

variables the percentage variation accounted for at each of the five paddocks varied between 11 and 43% 

(data not shown). 

 

The relationship between routinely measured soil properties and FC and PWP are presented in Table 2. For 

the combined data set, the explanatory variables including radiometrics total count and elevation were 

significant for all of the soil water parameters and R
2
 values were between 59 and 61% for the spatial linear 

models (Table 2). 

 
Table 2. Significant explanatory variables used in spatial linear modelling of FC and PWP at two soil depths 

using combined data for five paddocks (n = 500). 

Parameters
A
 Depth 

(cm) 

Intercept Regression coefficients of explanatory variables
B
 R

2
 

(%) 

RSE
C 

   Elev RAD_TC RAD_U RAD_TH EM31cond Plancurv Relev60   

FC 0-20 -3.40 0.18 0.12    3.11  59 6.13 

 40-60 7.55 0.25 0.09 -0.23 -0.11    58 5.94 

            

PWP 0-20 -5.83 0.13 0.07   -0.04 2.04  61 3.61 

 40-60 1.68 0.15 0.04  -0.07   -2.31 59 3.33 
A
 FC (% wt) and PWP (% wt) are water content at -33 and -1500 kPa matric potentials 

B
 Regression coefficients are significant at the P value of <0.01 

C
 df (0-20 = 486, 40-60 = 487) 

 

Discussion 
Differences in soil moisture retention properties across paddocks have been found to contribute to resultant 

crop yields, including PWP, in the southern Mallee (Rab et al. 2009). There appear to be very few accounts 

that relate proximal measurements to temporally stable soil parameters such as PWP and FC. EMI surveys 

have demonstrated potential in prediction of stable soil properties for site specific management in the region 

(Jones et al. 2008). RAD_TC and aspect were significant explanatory variables with a significant positive 

association for FC and PWP while elevation and EM31cond demonstrated a negative association with FC 

and PWP for all sites. Spatial linear models for FC and PWP at 0–20 cm generally had higher R
2
 than those 

for 40–60 cm (p=0.05). Increasing PWP and FC, correlating with ECa, was observed for texture contrast and 

gradational soils with shallow topsoils. This positive relationship with radiometric total count measurements 

related to FC and PWP correspond to high topsoil clay content observed by Taylor et al. (2008). The sandy 

surface soils with relatively lower PWP and FC values generally emit fewer γ-rays, which is consistent with 

findings by Taylor et al. (2002) for radiometric total count. 

 

Conclusion 
Proximal sensing systems have demonstrated a rapid approach to measure soil moisture retention properties 

including FC and PWP. While EMI and γ-ray spectrometry provide a measure of soil response, not only is 

information captured about soils and soil variability within paddocks, but when combined with other data 

(such as yield or climate) may offer valuable data to inform spatial crop yield prediction models. γ-ray 

spectrometry and elevation have proven significant variables in the spatial modelling of soil moisture 

retention properties. As γ-ray spectrometry has largely only been acquired by airborne systems, there appear 

to be useful relationships between ground-based γ-ray and soil properties that are worthy of further 

investigation. Terrain elevation has proven useful in understanding spatial distributions of soil properties and 

the ability to map these. The developed equations can be used to predict FC and PWP for similar soils 

elsewhere. However, further research is needed to validate/improve the predictive models for a wider range 

of soils and landscape conditions. 
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Abstract 
The ability to map the spatial distribution of average soil property values using geophysical methods at the 

field level has been well described.  This includes the use of electromagnetic (EM) instruments which 

measure bulk soil electrical conductivity (σa).  However, soil is a three-dimensional medium.  In order to 

better represent the spatial distribution of soil properties with depth, methods of inverting σa data have been 

attempted (e.g. Tikhonov regularisation).  In this paper we employ a 1-D inversion algorithm with 2-D 

smoothness constraints to predict true electrical conductivity (σ) using σa data collected along a transect in 

an irrigated field in the lower Namoi valley.  The σa data includes the root-zone measuring EM38 and the 

vadose-zone sensing EM31: in the vertical (v) and horizontal (h) dipole modes and at heights of 0.2 and 1.0 

m, respectively.  In addition, we collected EM38 σa at heights of 0.4 and 0.6 m.  In order to compare and 

contrast the value of the various σa data we carry out individual inversions of EM38v and EM38h collected 

at heights of 0.2, 0.4 and 0.6 m, and EM31v and EM31h at 1.0 m.  In addition, we conduct joint inversions of 

various combinations.  We find that the values of σ achieved along the transect represent the duplex nature 

of the soil.  In general, the EM38 assists in resolving solum and root zone variability of the cation exchange 

capacity (CEC – cmol(+)/kg of soil solids) and the electrical conductivity of a saturated soil paste extract 

(ECe – dS/m), whilst the use of the EM31 assists in characterising the vadose-zone and the likely location of 

a shallow perched-water table.  In terms of identifying an optimal set of EM σa data for inversion we found 

that a joint inversion of the EM38 at a height of 0.6 m and EM31 signal data provided the best correlation 

with electrical conductivity of a saturated soil paste (ECp – dS/m) and CEC (respectively, 0.81 and 0.77). 

 

Key Words 
Drainage channels, digital soil mapping, EM38, EM31, electromagnetic (EM) induction, EM inversion 

 

Introduction 
The application of electromagnetic (EM) induction instruments for digital soil mapping has increased over 

the last 10 years.  For example, the EM38 has been used to map management zones (Triantafilis et al. 2009a) 

and map the spatial distribution of average soil moisture (Tromp van Meerveld and McDonnell 2009), soil 

salinity (Wu et al. 2009), deep drainage (Triantafilis et al. 2003), depth to water table (Buchanan and 

Triantafilis 2009), clay content (Triantafilis et al. 2001) and CEC (Triantafilis et al. 2009b).  

However, management of soil requires information about the vertical distribution of its properties.  In order 

to determine this, various approaches have been proposed.  The best examples appear in relation to 

describing soil salinity.  Australian examples include logistic profile modeling (Triantafilis et al. 2000).  A 

less site-specific approach involves the reconstruction of the true electrical conductivity (σ) profile itself.  

Cook and Walker (1992) developed a method using linear combinations of σa measurements to estimate σ at 

a depth interval of interest.  Borchers et al. (1997) and Hendrickx et al. (2002) used Tikhonov regularization 

for estimating σ within a soil profile.  The aim of this study is to use EM imaging and σa collected by an 

EM38 and EM31 to infer the spatial distribution of soil properties related to σa across an irrigated cotton 

field in the lower Namoi valley.  We compare these models qualitatively and quantitatively with estimated 

and measured soil laboratory data including: volumetric moisture content (θ); electrical conductivity of a 

saturated soil paste (ECp – dS/m) and extract (ECe - dS/m); clay content (%); and, cation exchange capacity 

(CEC - mmol(+)/kg of soil solids). 

 

Methods 
The study field is located 3 km southeast of Wee Waa (Figure 1) which is situated in the lower Namoi valley 

of northern New South Wales (30.24°S, 149.48°E).  It is located at the northern edge of the Pilliga Scrub.  A 

large drainage channel is evident at the northern end of the field. 

EM data collection involved acquisition along a transect using a Mobile Electromagnetic Sensing System-
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MESS (Triantafilis et al. 2002).  Here EM38 measurements are made in the vertical (EM38v) and horizontal 

(EM38h) modes.  Given the operating frequency (i.e. 14.5 kHz) and coil spacing (1.0 m), the depth of 

exploration is 1.5 and 0.75 m (McNeill 1990), respectively, when the instrument is placed on the ground.  In 

this study we measure EM38v and EM38h σa at heights of 0.2, 0.4 and 0.6 m.  The larger coil spacing (3.7 

m) and smaller operating frequency (9.8 kHz) of the EM31 enable exploration depths of 6 and 3 m, when 

measured in the vertical (EM31v) and horizontal (EM31h) mode and 1.0 m (McNeill 1980), respectively. 

The EM38 and EM31 σa is passed through a modified version of a 1-D laterally constrained method (i.e. 

EM34-2D) developed by Monteiro Santos (2004).  We use a damping factor (λ) of 0.6 with inversions 

modelled onto a 2 m mesh spacing along the transect at depths of: 0.075, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 

0.75, 0.85, 0.95, 1.05, 1.17, 1.28, 1.40, 1.53, 1.67, 1.80, 1.95 and 2.1 m. 

To validate the EM inversions, 9 sites are available along the transect: Site 22 in the south to site 14 in the 

north.  These were chosen to account for the range of EM σa data values (Triantafilis et al. 2009b).  At each 

site soil was sampled at 0.30 m depth increments to 2.1 m.  The samples were analysed for: gravimetric soil 

moisture content (w - %), electrical conductivity of a saturated soil paste (ECp - dS/m) and its extract (ECe - 

dS/m) and the saturation percentage (SP).  We calculate θ (cm
3
/cm

3
) from w x ρ, where we estimate bulk 

density (ρ- g/cm
3
) using ρ = 1.73 – 0.0067 x SP (Rhoades et al. 1989).  Particle size fraction is determined 

using the hydrometer method with the soil texture class and grade determined.  We estimate cation exchange 

capacity (CEC - mmol(+)/kg) using a mechanical leaching device (Tucker 1974; Holmgren et al. 1977). 

   

Results and Discussion 

Figure 1 shows the spatial distribution of EM38 and EM31 σa measured in various modes of operation and at 

several heights along transect 3.  The following points summarize the σa data: i) σa patterns are similar; ii) σa 

is larger in the vertical than the horizontal mode for both instruments; iii) EM31 σa is larger than equivalent 

EM38 σa; iv) EM38 data decreases with increasing height: v) σa generally decreases from south to north (i.e. 

tail ditch); vi) Difference in σa in vertical and horizontal mode is larger in the south. 

Figure 2a shows the plot of estimated volumetric soil water content (θ) with depth.  Topsoil and subsurface 

clay is small (< 20 %) and equates to a loam to silty loam texture class (Texture Group - 3).  At the southern 

end subsoil clay content (i.e. 22, 21, 20 and 19) is intermediate (i.e. 25-40 %) varying from a clay loam 

(Texture Group - 4) to light clay (Texture Group - 5).  In the centre and north (i.e. 18, 17, 16, 15 and 14) 

subsoil clay (> 40 %) falls within the light-medium to heavy clay class (Texture Group - 6).   

 

  
Figure 1. Spatial distribution of apparent soil electrical 

conductivity (σσσσa - mS/m) of EM38v and EM38h and heights 

of: (a) 0.2 m, (b) 0.4 m; and, (c) 0.6 m and EM31v and 

EM31h at a height of 1.0 m; (d) location of 9 soil sampling 

sites along the transect; and, (e) electrical conductivity of 

saturated soil paste (ECp - dS/m). 

Figure 2. Contour plot of measured a) estimated volumetric 

moisture content (θθθθ - cm3/cm3), b) clay content (%), c) soil 

texture grade, d) cation exchange capacity (CEC - cmol(+)/kg 

of soil solids), and e) electrical conductivity of saturated soil 

paste extract (ECe - dS/m). 
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Figure 2d shows the topsoil is characterized by uniformly small CEC (i.e. < 9 cmol(+)/kg of soil) with CEC 

intermediate to large in the subsoil.  At the southern end subsoil CEC is largest (i.e. > 18 cmol(+)/kg of soil), 

whilst in the north CEC ranges from small (9 cmol(+)/kg of soil) to intermediate (12-15 cmol(+)/kg of soil).  

With regard to ECe, Figure 2e shows a small amount of salt has accumulated in two of the cores at the 

southern end.  Interestingly site 19 exhibits salt levels equivalent to the profiles at the northern end (i.e. < 1.5 

dS/m).  Figure 1e shows measured ECp.  It represents the overall σ of the samples collected and is therefore a 

measure of the various soil properties known to influence σa.  Figure 3a, b and c shows the spatial 

distribution of σ considering the inversion of the EM38 σa data at a height of 0.20, 0.4 and 0.6 m, 

respectively.  The 2-D distribution of σ reflects the spatial distribution of θ and the duplex nature of the soil.  

The pattern of σ corresponds better with spatial distribution of CEC, ECe and ECp.  The sandy to loamy sand 

topsoil (0-0.3 m) and subsurface (0.3-0.6 m) horizons are characterized by smaller σ (< 30 mS/m).  At the 

northern end, intermediate-large σ (60-120 mS/m) characterize the medium clay textured subsoil horizon.  

Interestingly, the largest σ values (>120 mS/m) characterize equivalent medium clay and clay loam textured 

subsoil horizons in the centre and southern end, respectively.  This is because the subsoil is more reactive, as 

evidenced by larger values of CEC (Figure 2d). 

It is also worth mentioning that given the soil profiles along most of the transect are duplex in nature, we 

might have expected to resolve a sharp change in σ at a depth of around 0.30 m.  The change in σ is gradual, 

however, with topsoil and subsurface σ (30 mS/m) changing to larger values in the subsoil (> 120 mS/m) 

over a depth range of 0.6 m.  Nevertheless, the inversion of the EM38 σa data has been able to detect the 

extent of a known minor drainage channel at 6651750 and represented by the slot of small to intermediate 

values of profile σ (90-120 mS/m).  This location is aligned with soil sampling site 19.  In addition, a second 

minor drainage channel may also have been identified at 6651650.  

To represent the spatial distribution of σ within the solum, we conducted various joint inversions.  Figure 3d 

shows the σ profile achieved using the EM38 σa at heights of 0.4 and 0.6 m.  The change in σ occurs over a 

smaller depth.  An explanation is that as the EM38 is raised a larger proportion of the measurement is 

contributed by the less reactive topsoil and subsurface.  However, the deep subsoil representation of soil is 

diminished, as is our ability to differentiate the clay mineralogy at either end of the field. 

The deeper subsoil is better represented when we invert the EM31 data (Figure 3e).  The large values of σ 

that characterise the deeper subsoil at the southern end of the field may be attributable to the presence of a 

shallow perched water table.  Our ability to resolve topsoil and subsurface features are poor, however. 

 

  
Figure 3. True electrical conductivity (σσσσ - mS/m) estimated 

using apparent soil electrical conductivity (σσσσa - mS/m) data 

collected using: an EM38 at a height of (a) 0.2 m, (b) 0.4 and 

(c) 0.6 m; and (d) joint inversion using the EM38 at heights 

of (d) 0.4 and 0.6 m, and (e) collected using only an EM31 at 

a height of 1.0 m. 

Figure 4. True electrical conductivity (σσσσ - mS/m) estimated 

using apparent soil electrical conductivity (σσσσa - mS/m) data 

collected using an EM31 at a height of 1.0 m and an EM38 at 

a height of (a) 0.2 m, (b) 0.4 and (c) 0.6 m; and joint 

inversions with the EM38 at heights of (d) 0.4 and 0.6 m, and 

(e) 0.2 m, 0.4 and 0.6 m. 
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The spatial distribution of σ developed from joint inversions between the EM31 and EM38 at individual 

heights of 0.2, 0.4 and 0.6 m are shown in Figure 4a, 4b and 4c, respectively.  Joint inversions are also shown 

for various other combinations.  In terms of determining an optimal set of σa data, we found that the use of the 

EM38 σa at a height of 0.6 m and EM31 data (Figure 4c) led to the highest correlation with ECp (0.81). 

 

Conclusion 

The spatial distribution of topsoil, subsurface and subsoil properties are discernible by the inversion of σa 

data collected along an intensively surveyed transect within an irrigated cotton growing field south-east of 

Wee Waa.  The root-zone model, where the EM38 σa data (EM38v and EM38h) available at heights of 0.20, 

0.4 and 0.6 m discern the major soil types and physiographic features within the field.  This includes: the 

duplex soil profiles with more reactive clay (> 12 cmol(+)/kg) at the southern end of the field and the duplex 

soil profiles associated with a prior stream at the northern end.  The location of two minor drainage channels, 

equivalent to the soil that characterises the northern end are discerned at the southern end.   

To better resolve the duplex nature of the soil we develop a solum model, which involved passing the entire 

EM38 σa data set (EM38v and EM38h) available at various heights (0.20, 0.40 and 0.60 m) through our 1-D 

inversion algorithm.  Whilst we are able to better represent the clear and abrupt change in clay content, the 

inversion model is unable to resolve differences in subsoil σ of the two types of soil profile that characterize 

the northern and southern end of the field.  The use of the EM31 σa data in reconstructing σ in the root-zone 

appears to be limited.  Its greatest contribution is in characterizing and defining the lower boundary.  This 

conclusion is borne out when we developed two joint EM inversion models of the soil and vadose-zone (e.g. 

developed by entering the EM38v and EM38h σa data available at various heights.  Statistical analysis 

showed that the best correlation with ECp (0.81) is achievable by jointly inverting the EM38 σa at a height of 

0.60 m with the EM31 σa data.  The approach we have used has been applied to the joint inversion of EM38 

and EM34 σa data (Triantafilis and Santos 2009) as well as to a DUALEM-421 (Monteiro Santos et al. 

2009). 
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Abstract 
Huge amounts of chromium (Cr) compounds are releasing into the environment because of anthropogenic 

activities. Speciation of chromium compounds is important in understanding the toxicity because of 

contrasting characters of hexavalent (Cr(VI) and trivalent Cr(III) chromium). An improved method for 

estimation of Cr species in environmental samples is developed using different complexing ligands and 

detected by ion chromatography (IC) coupled with inductively coupled plasma- mass spectrometer (ICP-

MS). Among six complexing ligands probed, NTA 3Na
+
 and HEDTA gave the highest UV response and 

highest selectivity for Cr(III) complexation using an Agilent anion-exchange column  with  a mobile phase 

containing 20 mM NH4NO3  at pH 7.1 without Cl
-
 interference. Conditions including pH, concentration ratio 

[Cr(III) / NTA 3Na
+
, HEDTA)] and stability of Cr(III) complexes were investigated with pre-column 

derivatization. In conclusion, the proposed method could be used for the quantification of chromium species 

in contaminated water and soils within minutes. 

 

Key Words 
Chromium toxicity, speciation, ligands, complexation, retention time, IC-ICP MS. 

 

Introduction 
Chromium is used in many industries including electroplating, timber treatment, tannery industries, iron and 

steel industries (Nriagu and Pacyna 1988).  As a result, anthropogenic discharge of chromium (Cr) often 

occurs into the environment. The toxicity, mobility and bioavailability of Cr depend on its oxidation state. Cr 

species exist in different oxidation states, from Cr
2+

 to Cr
6+

.  However, trivalent (Cr
3+

) and hexavalent (Cr
6+

) 

are predominant species in environment. Hexavalent chromium (Cr(VI)) species present as chromate (CrO4
2-

), 

bichromate (HCrO
4-

) and dichromate (Cr2O7
2-

) which are toxic and mutagenic, mobile in alkaline and 

slightly acidic soils (Venitt and Levy 1974; Bauthio 1992). Nevertheless, Cr
3+

is relatively non toxic and is 

considered as an essential nutrient at low levels in the human diet for effective glucose maintenance 

(Anderson 1989). Trivalent chromium [Cr(III)] 
 
mostly retained onto soil particles and also precipitated as 

Cr(III) hydroxide (Bolan et al. 2003).   

 

Quantification of total chromium in environmental samples may not be sufficient to understand the 

distribution of various Cr species because of contrasting properties of Cr(III) and Cr(VI). Detailed 

information about oxidation states is essential to understand the toxicity of Cr. Therefore estimation of 

Cr(VI) and Cr(III) separately, rather than as total Cr  is crucial. Several methodologies are available to 

measure Cr species in environmental samples using atomic absorption spectrometry (AAS) (Subramanian 

1988; Sperling et al. 1992; James et al. 1995 and Adria-Cerezo et al. 2000).  Ion chromatography (IC) 

coupled to inductively coupled plasma- mass spectrometry (ICP-MS) is currently available for metal 

speciation. However, the simultaneous determination of Cr(VI) and Cr(III) using a single chromatography 

column is difficult because Cr(III) is in the cationic form, however Cr(VI) is anionic .  Hence, conversion of 

cationic Cr(III) to anionic form and subsequent separation of   these two anionic species with  a single anion-

exchange chromatography hyphened with  ICP-MS is possible since ICP-MS provides an ultra-sensitive 

elemental detector. 

 

For separation of Cr(III) and Cr(VI) species, liquid  chromatography (LC) coupled with inductively coupled 

plasma (ICP-MS)  has been developed (Camara et al. 2000; Michalke 2002). Normally simultaneous 

determination of chromium is difficult because separation of Cr(VI) and Cr(III) using a single anionic 

column is impossible. However this problem can be resolved using two approaches. The first of these 

approaches uses an anion-exchange column and a cation-exchange guard column in series or a mixed mode 

column to retain both species (Pantsar-Kallio et al. 1996; Barnowski et al. 1997). The second approach 
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involves a derivatization process, whereby Cr(III) is complexed with a ligand to form anionic complex, 

which can be simultaneously separated from Cr(VI) by anion-exchange column on ion chromatography 

(Tomlinson et al. 1994; Byrdy et al. 1995). Aminopolycarboxylic acids like 1,2-cyclohexanediamine 

tetracetic acid (CDTA), ethylene diamine tetracetic acid (EDTA), diethylene triamine pentaacetic acid 

(DTPA) were used to convert  Cr(III) into anionic complexes (Jung et al. 1997; Himeno et al. 1998). The 

objectives of this work was to (i) identify the efficiency of complexation of different ligands with Cr(III); (ii) 

separation using  ion chromatography (IC) and (iii) simultaneous determination of Cr(III) and Cr(VI) using 

ICP MS based on retention time.  

 

Experimental 
Agilent LC (1100 series) and ICPMS (Agilent 7500c) instruments were used for the determination of Cr(III) 

and Cr(VI). Agilent anion-exchange column (G3154A/102, 4.6x150mm) with a guard column (4.6x10mm) 

was used for chromatographic separation. The details of the instruments and the ICPMS conditions have 

been given elsewhere (Chen et al. 2007). Millipore water (18.2 MΩ/cm, Milli-Q plus system, Millipore, 

Bedford, MA, USA) was used throughout experimental procedure. Hexavalent chromium (hex chrome) 

standard solution (10 mM) was prepared from potassium dichromate (AR grade, Sigma-Aldrich, Sydney). 

Trivalent chromium stock standard solution (10mM) was prepared from chromium (III) nitrate, BDH, UK). 

Intermediate and working solutions were prepared daily.  

 

Six ligands [PDA (2,6 pyridine dicarboxylic acid),  HEDTA (N-(2-hydroxyethyl ethylene diamine triacetic 

acid), DTPA (diethylene triamine pentaacetic acid), EDTA (ethylene diamine tetraacetic acid, disodium salt),  

NTA (nitrilo triacetic acid), NTA 3Na+ (nitrilo triacetic acid, trisodium salt), AR grade, Sigma-Aldrich, 

Sydney]  which varied in their complexing properties were taken in a beaker and mixed vigorously with 

Cr(III) at ratio of 1:2 with concentration of 0.1 mM. The mixed solution heated on hot plate at 80
0
C for an 

hour to react Cr(III) with ligands because Cr(III) is kinetically inert at room temperature.  

Solutions of Cr(VI) and [Cr(III)-ligand)]  were mixed in a ratio of 1:1 in  a glass vial and 20 µl of the 

solution was injected into HPLC (flow rate is  1.0ml/min at 30
0
C column temperature) and  NH4NO3 (10mM) 

was used as an eluent. Outlet of the separation column was connected directly to the nebuliser of ICP-MS via 

a polyetheretherketone (PEEK) tube and chromium was detected at m/z 52.  

 

Results 
Preliminary results indicated that except for NTA, all the five ligands chromatograms overlapped. To 

increase resolution further, solutions have been diluted to 0.01 mM different concentrations (10-30 mM) of 

mobile phase NH4NO3 were used and observed that retention time deceased with increasing concentration 

and both species separated best in 20 mM NH4NO3. 

 

The results from ICP-MS chromatograms (Figure 1 and Figure 2) suggest that separation for Cr(III) and 

Cr(VI) was achieved using NTA 3Na
+
  and HEDTA as complexing agents. This complexation could be 

attributed to the formation of stable Cr-NTA 3Na
+
 and Cr-HEDTA, resulting in the separation based on 

difference in retention time, because the molar mass of [Cr(III) + ligand] is very much different from Cr(VI) 

species. Whereas the rest of the ligands have poor capabilities in complexing Cr(III). Temperature of the 

column, eluent pH and concentration ratio of Cr(III)/ NTA 3Na
+
 , HEDTA were also investigated. Results 

indicated that maximum complexation of ligands with Cr(III) was achieved at pH 7.1 with a concentration 

ratio of 1:2 (Cr(III):ligands) at 80
o
C for 20 min. 
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Conclusions 
The results suggest that stable chromium-chelate complexes, [Cr(III) – NTA] and [Cr(III) – HEDTA]  were 

formed and successfully separated for both Cr(III) and Cr(VI) by complexing ligands based on difference in 

retention times on IC-ICP MS. This method could be used as a basis for separation and simultaneous 

quantification of Cr(III) and Cr(VI) in water and soil solutions. Further study is required to determine the 

stability constants of Cr(III) – NTA] and [Cr(III) – HEDTA] complexes. 
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Abstract  
Soil mapping is an expensive exercise, especially in areas with high relief, low infrastructure (roads), and 

dense vegetation as given in Northern Thailand. However, for any development activity high resolution 

natural resource information is necessary. The DFG-funded -Uplands program- in Thailand is seeking for 

low cost soil mapping techniques in order to identify application zones for agricultural innovations. One 

evaluated option is the use of gamma-ray spectrometry, which measures the abundance of radio-nuclides in 

soils and parent materials. Gamma-ray spectrometry can be used ground based as well as remote (airborne), 

and offers this way application at different scales. This paper deals with the theory behind application for soil 

mapping, results of measurements at the profile to catchment scale in N-Thailand and potential other uses. 

The results show that gamma-ray spectrometry can support field identification of WRB Soil Reference 

Groups especially in the case of different parent materials or with different CEC as well as at the same time 

different base saturation. Future perspectives are mapping at regional scale with remotely sensed data as well 

as erosion mapping at the field scale. 

 

Key words 
Radiometry, rapid soil assessment, clay illuviation, mapping tools, northern Thailand. 

 

Introduction 
Radiometry is a well known methodology in geo-sciences, especially in geology, geomorphology and 

mineral resource mapping (Wilford 1995, Tulyatid 1997). It can be applied for remote as well as ground-

based mapping. The radiometric fingerprint of a site mainly depends on the parent material, its mineralogy 

and geochemistry (Dickson and Scott 1997). In general, the radiometric fingerprint of the parent material is 

inherited to the soils which develop from them. However, from a theoretical perspective, soil formation 

processes should also alter the nuclide signature of soils (Taylor et al. 2002). This might be explained taking 

potassium as an example. In well draining soils from the semi-arid to the per-humid zones potassium is 

liberated from primary minerals like micas and feldspars by hydrolysis and protolysis. The liberated K can 

be incorporated in newly formed clay minerals, adsorbed by clay minerals or organic matter (CEC) or 

leached out of the profile with the soil solution. Since it is to be expected that different nuclides show a 

different behavior with respect to stability against weathering and transport depending  on their size, weight 

and valency, the radiometric fingerprint should change with time due to preferential leaching of i.e. lighter 

and monovalent ions.  

Another process, which can lead to a change of the fingerprint is redistribution of soil material by erosion 

processes. Especially, if several different parent materials, i.e. limestone and magmatic materials occur in the 

same landscape in different topographic positions, erosion can lead to a strong change of the signature, 

where eroded material is deposited (= relative landscape lows). Also the signal can be diluted by absolute 

enrichment of certain elements, like with ironpan formation in Gleysols. In semi-arid and arid landscapes 

salt, gypsum and carbonate accumulation can lead to dilution or change of single nuclide signals. Finally, 

also redistribution of elements within soil profiles can happen, predominantly by illuviation i.e. of clay 

minerals, which again concerns potassium. 

These theoretical reflections give reason to test gamma-ray spectrometry as a potential tool for rapid soil 

assessment in the field, which has so far - with few exceptions - been neglected. An opportunity appeared in 

the collaborative „Uplands Program“ financed by Deutsche Forschungsgemeinschaft (DFG) in Northern 

Thailand. Within this framework one task was to establish a regional soil map in order to determine  

potential intervention zones for new agricultural practices. Since time and funds were restricted new means 

for rapid soil assessment needed to be developed among which gamma-ray spectrometry was one tested 

option. In the following experiences with this method will be presented. 
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Research area and materials 
Research area 
The intervention zone is limited by the Myanmar boarder in the north and west, the Doi Inthanon massive in the south 

and the Chiang Mai Basin in the east. So far mapping concentrated on three sites which represent the major parent 

materials in the region: Mae Sa in the NE (10.5 km
2
, stressed granite), Bor Krai in the NW (8.5 km

2
, limestone), and 

Huay Bong in the centre (6.8 km
2
, sandstone) 

 

Materials 

As ground-based spectrometer a GRM-260 handheld device (Gf Instruments, s.r.o. Geophysical Equipment 

and Services, Czech Republic) was used. We tested the influence of the background radiation, measured rock 

samples, as well as soil profiles horizon-wise. For each soil profile the radiation of eU, eTh, and K were 

measured in 10 cm depth intervals with a sampling time of 3 minutes and 3 repetitions. A total of 547 

measurements between 0 and 190 cm soil depth were conducted. The measured energy spectrum ranges from 

0.401 to 3.001 MeV or for wavelengths between 0.03 x 10
-4

 to 4.13 x 10
-4

 nanometers. The respective 

sensitivity coefficients for yK, yU, and yTh were 0.01929, 16.5, and 10.2 mg/kg for counts/s. In order to 

avoid disturbances due to soil moisture, measurements were carried out during the dry seasons (October to 

May) of 2007 and 2008. Finally airborne radiometric data, which were provided by the Department of 

Mineral Resources in Bangkok and collected in the 1980ies are available for comparison reasons. Soil 

analysis for comparison reasons and classification of soils was executed according to Herrmann (2005). 
 

Results and Discussion 
Parent material radiation 

As to be expected, parent material exhibit different radio signatures, with magmatic ones (i.e. latiteI 

generally emitting high and chemical sediments (limestone) emitting low radiation. Clastic sediments 

(claystone) show intermediate values (Table 1). 

 
Table 1.  Gamma-ray spectra of different rocks and soils derived in the Bor Krai area of northern Thailand. 

Soil/Rock K [dag/kg] eU [mg/kg] eTh [mg/kg] 

Limestone (N=21) 0.2 ± 0.1 2.0 ± 0.9 4.0 ± 2.7 

Alisols (N=42) 1.8 ± 0.9 4.5 ± 1.4 15.4 ± 4.1 

Acrisols (N=105) 0.6 ± 0.2 7.1 ± 2.2 27.8 ± 5.1 

Ferralsols (N=27) 0.4 ± 0.2 7.4 ± 1.9 25.2 ± 5.5 

Umbrisols (N=21) 0.8 ± 0.2 6.4 ± 2.1 23.1 ± 4.2 

Claystone (N=6) 2.5 ± 0.2 3.8 ± 1.7 12.9 ± 1.2 

Luvisols (N=90) 2.1 ± 0.5 4.0 ± 1.4 16.0 ± 2.5 

Alisols (N=258) 2.2 ± 0.5 4.5 ± 1.7 16.4 ± 3.2 

Umbrisols (N=75) 2.8 ± 0.7 4.7 ± 1.5 15.4 ± 4.1 

Latite (N=1) 17 9 131 

Cambisols (N=19) 2.1 ± 0.8 1.2 ± 0.6 3.4 ± 1.1 

Luvisols (N=30) 1.6 ± 0.4 1.6 ± 0.7 3.9 ± 0.9 

Freshwater limestone (N=3) 0.1 ± 0.1 0.7 ± 0.4 1.4 ± 0.7 

Chernozems (N=39) 0.7 ± 0.3 1.9 ± 1.0 5.0 ± 3.0 

 
Soil reference group radiation and separation 

Also WRB Soil Reference Groups (IUSS Working Group WRB 2006) show differences in radio signatures 

(i.e. Umbrisols vs. Chernozems, Table 1) if derived from different parent materials (limestone vs. freshwater 

limestone respectively). The picture becomes less clear for soils with similar genesis (i.e. clay illuviation) on 

the same parent material (i.e. Luvisols and Alisols on claystone). The rule that clearly appears is that 

differentiation must be based on multi-spectral measurements and cannot be executed based on one element 

alone. 

In fact, field separation of illuviation type soils is of high interest to soil mapping, since the classification of 

the respective WRB Soil Reference Groups (Acrisol, Alisol, Luvisol, Lixisol) is based on chemical 

characteristics, which cannot be determined in the field. Therefore, we tried to exploit the radiometric data in 

more detail. Especially the K/Th ratio appeared to be very useful, whereas the behaviour of U is not well 
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understood. The latter might be a general methodological problem using the 214 Bi nuclide for uranium 

estimation, since volatile radon occurs in the decay chain, which leads to a potential high estimation error.  

Figure 1 shows that it is possible to nearly completely separate Alisols and Acrisols in the limestone 

catchment based on radiometric data. For the cases where the separation does not work out, also results of 

chemical analysis are close to the threshold values of the WRB classification (24cmolc+/kg clay, 50 % base 

saturation), and the distance to the threshold values is within the detection error of the analytical method. 
 

 
Figure 1.  Binary plot of K and Th radiation of soil horizons from different WRB Soil Reference Groups for the 

limestone catchment Bor Krai 

 
Behaviour of K, Th, and U nuclides during soil genesis in the Bor Krai limestone catchment in N-Thailand 

Limestone, due to its high carbonate concentration, exhibits overall low radiation for the measured radio nuclides. 

During weathering carbonate is lost and clastic components are relatively enriched. This leads to an increasing radiation 

by an increasing concentration of radio-nuclides (Figure 2). The residual of limestone after dissolution of carbonate is a 

clay-rich clastic sediment, as it can also be found in the Bor Krai area. Under the given climatic conditions (seasonal 

tropical, semi-arid to sub-humid), clay illuviation is the dominant soil formation process, accompanied by base loss. 

Base loss by leaching leads to an absolute loss of elements including radio nuclides, which seems to affect 

predominantly K. Base loss is always accompanied by silica loss, which favours the formation of two-layer clay 

minerals with low substitution of central atoms and low cation exchange capacity. Consequently, total binding capacity 

for cationic nuclides is constantly reducing.  

 

Apart from absolute loss, the radio signature is depending on redistribution within the soil profile by vertical particle 

movement, which mainly concerns finer particles (clay illuviation). Further on, erosion processes influence the surface 

signal at erosion sites (in case of illuviation type profiles through loss of depleted topsoil material) and the whole profile 

signal on depositional sites (depending on the origin of deposited material, which is in most cases topsoil material, as 

shown for Umbrisols). 

 

Though also an absolute loss for U and Th nuclides must be suspected, our measurements show an increasing signal 

during terrestrial soil development, which we attribute to relative enrichment in sesquioxide components. However, this 

hypothesis will need further investigation. 

 

 
Figure 2.  Conceptual model of radio nuclide behaviour during soil formation in the Bor Krai catchment in N-

Thailand 
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Outlook 
Apart from field scale mapping, gamma-ray spectrometry has also a potential for upscaling of results and 

mapping at the regional scale. Since airborne data are available for the whole of northern Thailand  (Tulyatid 

& Ra-Nguppits 2004), the next step will be to correlate ground-based and airborne data and to search for the 

best upscaling algorithms, to connect the two scales. For potential mapping approaches which may integrate 

radiometric data see Schuler (2008) and Schuler et al. (this volume). Since erosion influences the topsoil 

radio signal, also erosion mapping is a potential, which is presently evaluated (see Erbe et al. this volume). 
 

Conclusions 
Ground-based gamma-ray spectrometry has a potential as tool for WRB Soil Reference Group distinction at 

the profile, field and (sub-)catchment scale. For illuviation type soils this is especially true if parent material 

differs or CEC and base saturation are significantly different. The measurements at profile scale are of 

special interest since they can replace high cost and time consuming chemical analyses (CEC and base 

saturation). Therefore, this potential should be further researched in other environments (parent materials, 

climates). 

 

Further applications may concern in future erosion mapping at the field scale and regional soil and terrain 

mapping if airborne data are accessible (Tulyatid & Ra-Nguppits 2004, Wilford 1995). 
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Abstract 
Proximal sensors are becoming widely used in precision viticulture, due to the quick, easy and non-invasive 

identification of soil spatial variability. The apparent soil electrical conductivity (ECa) is the main parameter 

measured by sensors, which is correlated to many factors, like soil water content, salinity, clay content and 

mineralogy, bulk density, and porosity. In the last three decades, many proximal sensors for the measurement 

of the ECa have been produced and commercialized. This study compares three different sensors to delineate 

soil boundaries and estimate clay and skeleton content in a vineyard of the Chianti region (Central Italy). The 

sensors were a geoelectric system (ARP-Automatic Resistivity Profiling) with 3 different depths of 

investigation (50 cm, 100 cm and 170 cm), a single-frequency Electro-Magnetic Induction sensor (EMI, 

Geonics EM38-DD), in horizontal (EM38_HDP) and vertical dipole configuration (EM38_VDP) and a 

multi-frequency EMI sensor (GSSI Profiler EMP- 400), in horizontal (Profiler_HDP) and vertical 

(Profiler_VDP) dipole configuration.  All three sensors produced ECa maps with similar pattern. The 

strongest correlations between the instruments were between ARP-50 and EM38_HDP (r = 0.774), ARP-170 

and EM38_VDP (r = 0.805), and ARP-170 and Profiler in all the configurations (r = from 0.758 to 0.783).  

The correlations between ECa and clay content calculated on the fine earth were low or not significant with 

EM38 and Profiler (r = 0.36 to 0.61), both in vertical and horizontal configuration, and stronger with ARP (r 

= 0.61 to 0.81). The correlation improved and resulted significant for all the sensors (r = 0.56 to 0.86) when 

the percentage value of clay was referred to the whole soil (fine earth + skeleton). 

 

Key Words 
EM38, ARP, Profiler, EMI sensors, apparent electrical conductivity, precision viticulture. 

 

Introduction 
In the last years, some important farms have adopted precision viticulture (Proffitt et al. 2006) and utilize 

GPS, GIS, remote sensing, soil monitoring technologies etc. To manage the spatial variability inside the 

vineyard, the farmer needs geo-referenced maps, displaying areas with similar soil behavior, like hydraulic 

permeability, water retention, soil fertility, etc. A rapid, non-invasive and relatively cheap mapping of the 

soil apparent electric conductivity (ECa) can be a very useful tool for identifying important soil map units 

and soil properties, in particular, clay (Morari et al. 2009), water content (Davies 2004; Tromp-van Meerveld 

and McDonnell 2009), bulk density, and salinity (Doolittle et al. 2001).  The goal of this work was to test the 

suitability of three different proximal sensors in a difficult environment, as it is a vineyard on skeletal soils, 

and to relate the measured ECa with the clay content.  

 

Methods 
The sensors used for this work were: i) a single-frequency Electro-Magnetic Induction sensor (EMI, Geonics 

EM38-DD), ii) a multi-frequency EMI sensor (GSSI Profiler EMP- 400) and iii) a geoelectric system (ARP-

Automatic Resistivity Profiling). The EM38-DD is an EMI sensor composed by two EM38 sensors, coupled 

in perpendicular position (Figure 1a). Each sensor has an intercoil spacing of 1 m and operates at a frequency 

of 14,600 Hz. The depths of the magnetic field penetration are about 0.75 m and 1.5 m, respectively for the 

horizontal (HDP) and vertical (VDP) dipoles modes (Geonics Limited 1998). The instruments sensitivity 

varies as a non-linear function of depth (McNeil 1990). The GSSI Profiler EMP-400 (Figure 1b) is a 

multifrequency EMI sensor, which can operate to measure simultaneously up to 3 frequencies between 1,000 

Hz and 16,000 Hz, with intercoil spacing of 1.2 m. For this study we operated at 8, 10 and 15 kHz. The 

instrument can be used in vertical dipole mode (VDP) or in horizontal dipole mode (HDP), but the 

instruments sensitivity in function of depth is not still studied. The output of both the EM38-DD and Profiler 

is the apparent electric conductivity (ECa), measured in mS/m. 
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Figure 1.  The three proximal sensors used for this work. a) Geonics EM38-DD, b) GSSI Profiler EMP-400, c) 

Geocarta ARP©.  

 
The ARP © device (Figure 1c) was conceived by Geocarta (France). It is an automatic system for 

georesistivity survey at three different depths of investigation, in our case 0.5, 1 and 1.7 m. Resistivity values 

(ER), in ohm.m, are obtained from the intensity of the injected current and from the differences in electrical 

potential. These values can be easily transformed in ECa (mS/m) by the formula: ECa = (1/ER) 1,000.  

The survey with the EM38-DD and the Profiler EMP-400 was performed on the same day in August, when 

soils were dry on surface, whereas the survey with the ARP was carried out in May, when soils were moister 

and the contact soils-electrodes better. Therefore, the values of ECa measured by ARP were generally a little 

more elevated, because of the higher soil water content. For this work, we did not consider the temperature 

and the moisture content of the soils, but the textural features only. 

 

The studied vineyard was located in the Chianti area (Central Italy) and was about 4 ha in size. The soil units 

of the vineyard were TOR, a Typic Haplustepts clayey-skeletal, developed on Tertiary carbonatic flysch; 

NEB, a Typic Paleustalfs loamy, developed on Pleistocene fluvial deposits; and MIN, an Typic Endoaquepts 

clayey, developed on Pliocene marine deposits. All soils were rather clayey (clay content of the fine earth 

ranging from 28 to 56%) and stony (from 10 to 50 %), not saline (Figure 2).  Soil samples “tout venant” of 

some kilograms were taken for the measurement of skeleton content. The skeleton was classed into three 

classes and weighed: fine gravel (0.2-2 cm), coarse gravel (2-7.5 cm), cobbles (> 7.5 cm). The results were 

used to correct the calculation of the clay content (clay_corr) referred to the whole soil, fine earth + skeleton.  

  

 
Figure 2.  Map of soil units in the vineyard.  

 

Results 
The three instruments produced similar spatial patterns (Figure 3), which corresponded to the changes of 

clay and skeleton characterizing the soil map units. During the proximal survey, the EM38-DD and the 

Profiler EMP-400 had some problems in the horizontal dipole orientation, probably due to the interference of 

the iron wires of the vineyard rows with the magnetic field. Therefore, some wrong data (negative, or very 

close to 0) measured in HDP orientation should be deleted before data interpolation. All the three sensors 

produced ECa maps with similar pattern. The strongest correlations between the instruments were: ARP-50 

and EM38_HDP, ARP-170 and EM38_VDP, ARP-170 and Profiler, EM38_VDP and Profiler in all the 

configurations (Table 1). Scarce or not significant correlations resulted between clay content at 0-50 cm and 

ECa of all the configurations for the EM38 and the Profiler, while a better correlation resulted with the ARP-

50 (Table 2). Clay content at 50-100 cm correlated either moderately with the ECa of Profiler and EM38, or 

well with the ECa obtained from ARP-100. 
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Figure 3. ECa maps of the vineyard, obtained with the three different sensors. The variogram parameters for 

the interpolation were the same for all the maps (ordinary kriging). 

 

Table 1. Pearson correlation coefficients (r) of the three sensors (n = 99, probability < 0.001). 

Prof_VDP15 

Prof_VDP15 1.000 Prof_VDP10 

Prof_VDP10 0.999 1.000 Prof_VDP8 

Prof_VDP8 0.998 0.999 1.000 Prof_HDP15 

Prof_HDP15 0.978 0.979 0.979 1.000 Prof_HDP10 

Prof_HDP10 0.977 0.979 0.979 0.997 1.000 Prof_HDP8 

Prof_HDP8 0.977 0.981 0.982 0.996 0.997 1.000 EM38_HDP 

EM38_HDP 0.647 0.638 0.633 0.710 0.716 0.693 1.000 EM38_VDP 

EM38_VDP 0.924 0.924 0.924 0.919 0.923 0.922 0.764 1.000 ARP-50 

ARP-50 0.580 0.564 0.555 0.617 0.607 0.587 0.774 0.654 1.000 ARP-100 

ARP-100 0.699 0.688 0.683 0.717 0.710 0.699 0.774 0.753 0.920 1.000 ARP-170 

ARP-170 0.764 0.762 0.758 0.783 0.783 0.775 0.766 0.805 0.801 0.872 1.000 

 

The correlation coefficients improved when clay was calculated as percentage of the whole soil, fine earth 

plus skeleton (clay_corr). In particular, ECa measured by ARP-50 showed a strong correlation with 

clay_corr 0-50 cm and ARP-100 with clay_corr 50-100 cm. Medium correlation coefficients (r) were 

between clay_corr and Profiler in all the configurations and between clay_corr 50-100 and EM38_VDP.  

 
Table 2. Pearson correlation coefficients (r) between clay, skeleton, clay_corr and the sensors (n = 14). Bold: 

probability < 0.005; underlined: probability < 0.001; normal: not significant. 

Profiler VDP Profiler HDP EM38 ARP  

15kHz 10kHz 8kHz 15kHz 10kHz 8kHz VDP HDP 50 100 170 

clay 0-50 cm 0.532 0.517 0.503 0.493 0.507 0.482 0.418 0.363 0.682 0.647 0.608 
clay 50-100 cm 0.61 0.585 0.569 0.568 0.578 0.553 0.53 0.587 0.808 0.815 0.653 
skeleton content -0.663 -0.659 -0.654 -0.723 -0.713 -0.697 -0.661 -0.39 -0.702 -0.631 -0.659 
clay_corr 0-50 cm 0.655 0.642 0.628 0.657 0.658 0.637 0.567 0.396 0.772 0.735 0.689 
clay_corr 50-100 cm 0.707 0.687 0.672 0.702 0.701 0.68 0.642 0.562 0.86 0.854 0.72 
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Conclusion 
The patterns obtained with ECa of the three sensors were similar. The instruments could provide for a rapid, 

non invasive and relatively cheap soil survey in a difficult environment, like that of a vineyard on stony soils, 

although the iron wires of the rows interfered with the magnetic fields of the EMI sensors in the horizontal 

dipoles configuration. The cumulative response of Profiler does not seem change at different frequencies and 

was very similar to the EM38_VDP response. On top of that, both sensors were strongly correlated with 

ARP-170, except for EM38_HDP, which was better correlated with ARP-50 and ARP-100.  

The correlation between ECa measured by sensors and clay content was higher with the ARP system. On the 

other hand, the correlation with ECa and clay_corr was strong for all sensors, except for EM38_HDP. The 

proximal survey made by any of these instruments can allow to map and spatialize data of clay or clay 

corrected for the skeleton content (clay_corr) with negligible errors.   
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Abstract 
The introduction of ubiquitous computing technology in agriculture will allow the creation of a new 

agricultural system. To this end, a Japanese group has developed a number of new technologies over the past 

decade. One new technology is the “Field Server”. However, as a result of our long-term monitoring trials, 

some unexpected problems with the Field Server are now emerging. Here we describe the most significant 

points in the use of the Field Server based on our experiences in a rainfed paddy field in Thailand, and 

propose a new hybrid monitoring system incorporating a field network adapter that offers promise for safe 

agricultural production management in Asia. 

 

Key Words 
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Introduction 
The Field Server is an automatic monitoring system consisting of a CPU (a Web server), an analog-to-digital 

converter, an Ethernet controller; sensors to measure air temperature, relative humidity, solar radiation, soil 

moisture, soil temperature, and electrical conductivity; and a CCD camera. It can transfer high-resolution 

pictures of fields and sensing data through Wi-Fi broadband networks (NARO, 2009). However, the Field 

server does not have a data logging function because it is designed to be used on the network. Therefore, we 

need to build a data logging system on the network in order to use the Field Server. So far, however, there 

has been little research on long-term monitoring in the field by the Field Server. We have installed Field 

Servers across Asia in fields of paddy rice, spinach, cabbage, and peanut since 2006 (Mizoguchi, 2008). Here 

we describe some unexpected problems in the use of the Field Server which were revealed by our long-term 

monitoring trials in a rainfed paddy field in Thailand. Then we propose a new hybrid monitoring system 

which is improved based on our experiences and show example data obtained with the new system. 

 

Methods 
Experimental site 

We installed a Field Server on 2006 December 25 (Figure 1), three more on 2007 December 24, and another 

on 2008 December 26 in a rainfed field in Khon Kaen, northeast Thailand (16
o
27.657 N, 102

 o
 32.443 E). 

The Field Servers are at most 700 m apart. With these Field Servers, we have been monitoring 

meteorological conditions (air temperature, humidity, radiation, wind velocity, precipitation) and soil 

information via soil sensors (moisture content, temperature, electrical conductivity), and collecting images of 

the site. 

 

 
Figure 1.  Field Server installed on 2007 December 24 (left) and Insect nest built on CPU board of Field 

Server(right). 
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Field Network System 

The system installed in Khon Kaen comprises Field Servers, solar panels, a router, and an agent box (FSAB: 

Figure 2). In Thailand, all elementary schools have Internet infrastructure. We asked the school near the 

experimental site to rent us the Internet for our project. Data are stored via the Internet on a data server at 

Asia Institute Technology (AIT) in Thailand, the National Agriculture and Food Research Organization 

(NARO) in Japan, and The University of Tokyo (UT). Anyone can then download the data from our website 

(Mizoguchi, 2009) using ubiquitous tools such as a PC, mobile phone, i-Phone, Nintendo-DS, or PlayStation 

Portable.  
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Figure 2.  Field monitoring system in Khon Kaen, Thiland 

 

Results 
Hardware robustness 

The three Field Servers installed in 2007 broke down after only half a year when the heat and ultraviolet light 

weakened their acrylic poles. The Field Server installed in 2008 broke down after only 4 months when 

insects built a nest on the CPU board (Figure 1). At present, only the Field Server installed in 2006 remains 

alive and keeps sending data. These facts tell us that we must take into account the characteristics of the field 

environment and choose appropriate materials when we set Field Servers in harsh environments. 

 

Stability of the field network systems 

The stability of the field network system depends on the field solar power supply, the antenna, the local 

electrical power supply, and the Internet connection. If any one of them develops a problem, we lose data. In 

fact, we often lost data on account of power outages at the school because of lightning strikes. On rainy days, 

the Field Server stopped sometimes because of solar power shortage or antenna power shortage. These 

experiences show that we need to install a data logger as near to the sensors as possible to hold the data. 

 

Sensor calibration 

The Field Server can be connected to various types of sensors, including weather multi-sensors (Visala Inc.), 

weather stations (Davis Inc.), and analog soil sensors (Decagon Devices Inc. 2009). Digital soil sensors such 

as the 5-TE can be also connected to a data logger  (Em50; Decagon Devices Inc.)  via an RS232C cable. 

Additionally, hand-made sensors can be connected as long as their output is a voltage. Sensors must first be 

calibrated, in particular soil moisture sensors, because the default equation given by Decagon Devices Inc. 

often differs from soil to soil. To solve this problem, Mitsuishi (2007) developed a simple method of 

calibrating soil moisture sensors. 

 

Hybrid monitoring system consisting of a Field Server and a data logger 

The Field Server is useful only when the Internet connection and the power supply are stable. However, such 

conditions are limited in rural areas, even in Japan. If a problem arises, we ourselves must visit the site on 

account of a shortage of Field Server engineers. Maintenance costs thus increase in proportion to the distance 

to the site. In fact, we have wasted a lot of time and cost maintaining the Field Servers. We conclude that we 

must incorporate a stable data logger in the field network. To this end, we developed a “field network 
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adapter”. 

Field Network Adapter 

The field network adapter box (FNA box; X-Ability Ltd.; Figure 3) is protected against the intrusion of solid 

objects, dust, accidental contact, and water in electrical enclosures at the level of IP65 (IEC 60529). It houses 

a Wi-Fi network adapter, a battery, a timer, and a charge controller. The Wi-Fi network adapter is a one-port 

device server that lets us connect serial devices to 802.11b/g wireless or 10/100-Mbps Ethernet networks 

(Grid Connect, 2009). The FNA box derives its power from a small solar cell panel (2 W) and can be 

connected to an antenna in case the Wi-Fi signal is weak. The timer switches the device on and off to save 

power. The device is normally turned on for 1 hour a day, which is long enough to address the data logger. 

Once the FNA box is connected in the field, we can download the data when the device is on by using the 

Network Adapter Manager on the Web (Figure 3). Images of the field are also viewable because the Field 

Server camera is connected to the same network. 

 

 
Figure 3.  Field Network Adapter Box (left) and Network Adapter Manager on Web browser. 

 

 

 
Figure 4.  Changes in soil moistures, bulk electrical conductivity of soil and precipitation from Aug. 11 to Sep. 

12, 2009 in a rainfed paddy field in Khon Kaen, Thailand. The numbers in the Figure denote the sensors we 

used. 1: Volumetric water content (VWC, m
3
/m

3
) measured by EC-5 sensor buried horizontally at the depth of 4 

cm, 2: VWC (m
3
/m

3
)  by EC-5 sensor inserted perpendicularly at the depth of 2-7 cm, 3: VWC (m

3
/m

3
) by 5-TE 

sensor inserted perpendicularly at the depth of 2-7 cm, 4: bulk electrical conductivity (mS/cm) measured by 5-

TE sensor, 5: bulk electrical conductivity (mS/cm) measured by hand-made sensor, 6: precipitation (mm/hour). 
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Downloaded data - soil moisture, bulk EC and precipitation 

Figure 4 shows an example of data downloaded from an Em50 data logger, showing changes in soil 

moisture, bulk electrical conductivity, and precipitation from 2009 August 11 to September 12 in the rainfed 

paddy field at Khon Kaen. The numbers in the Figure denote the sensors we used. Soil moisture is measured 

with two EC-5 sensors and a 5-TE sensor (Decagon Devices Inc.); A EC-5 sensor (1) is buried horizontally 

at depths of 4 cm, and the other EC-5 sensor (2) and the 5-TE sensor (3) are inserted perpendicularly at the 

depth of 2-7 cm.  Bulk electrical conductivity is measured with a 5-TE sensor (4) and a hand-made sensor (5) 

of a pair of stainless steel rods inserted perpendicularly to a depth of 20 cm. Precipitation (6) is measured 

with an ECRN-50 rain gauge (Decagon Devices Inc.). Soil moisture and bulk electrical conductivity 

increased after rain. The horizontal soil sensor (1), measuring at a single depth, is more sensitive that the 

perpendicular ones (2, 3), which detects the average soil moisture over 2-7 cm.  

 

Conclusion 
A hybrid monitoring system consisting of a Field Server and a data logger connected by a field network 

adapter offers promise for safe agricultural production management in Asia. Although we have just started to 

test the system, stable and easy access to the data logger is reducing the worries that we felt before. 

However, there remain fundamental risks such as electric power outage and network disconnection. 

Consequently, we urgently need to train field network engineers to maintain the field monitoring system. In 

addition, we need to develop a more ubiquitous system based on the mobile phone system that is dependent 

on existing an Internet connection. Concern about the safety of imported food is increasing in Japan and a 

trial has started to show consumers a safe spinach field in Thailand (Honda, et. al, 2008). We hope that our 

new field monitoring system will help to bolster consumer confidence in food that is imported from other 

Asian countries into Japan. 
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Summary 
In recent years, soil reflectance measurements by means of spectrophotometers have been widely adopted in 

pedogenetic studies, and have gained relevance in the acquisition of remote sensing data at the laboratory 

and field scale. The goal of this work has been to establish the relationship between the chemical and 

mineralogical composition of soil and its spectral reflectance. Although reflectance analysis appears 

promising, there are no studies that have used reflectance spectroscopy to study volcanic soils. The results 

presented here confirm that diffuse reflectance spectroscopy (DRS) in the VIS-NIR (400-2500 nm) region of 

some Andisols is influenced by their specific mineral composition. In particular, the absorption band at 2200 

nm was correlated to kaolinite content, and the presence of gibbsite was correlated to an absorption band at 

2260 nm. These results show that laboratory spectrometric measurements can be used to rapidly acquire 

reliable information on the mineralogical properties of volcanic soils. These properties can then be used to 

evaluate how soils vary as a result of weathering and differences in parent materials. Future work can 

potentially involve the execution of field-level studies employing a portable spectroradiometer. 

 

Key Words 
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Introduction 
Spectroscopic analysis is a rapid and non-destructive method for determining the solid-phase constituents of 

a soil (Ben-Dor 2002).  Laboratory spectroscopic analysis of soils requires little or no sample preparation, 

and when used in conjunction with more traditional mineralogical characterization methods, can identify 

subtle mineralogical changes that other methods alone may miss. It is a powerful tool for the identification of 

both crystalline and amorphous minerals and can be used to identify rock and mineral weathering products, 

particularly phyllosilicates and other OH-bearing materials (Viscarra Rossel et al. 2006).  The characteristic 

absorption features used to identify a material are influenced not only by their chemistry but also by their 

structure. Consequently, subtle changes, for example a slight shift in the wavelength position of an 

absorption feature, can be indicative of significant changes in mineral chemistry or degree of crystallinity. As 

each layer in a mineral structure absorbs energy almost independently of its neighbor, the absorption of 

photons does not require long range crystallographic order. Reflectance spectra of soils result from the 

complex interaction of the mineral, organic, and liquid phases, as well as soil structure and particle size 

distribution (Chang et al. 2001).  Differences in these prosperities can be recognized by variation in the 

wavelength position, shape, and intensity of absorption features in the 0.3-2.45 µm wavelength interval. 

Subtle variations in the mineral composition or structure will result in changes in wavelength position and/or 

shape of characteristic absorption features and allow both the identification of individual minerals and 

mineral mixtures (Clark et al. 1990). Many minerals, including clay minerals and iron oxides, can be 

routinely identified with FTIR even when their concentrations are less than 1% of the bulk soil (Farmer 

1974).Visible near infrared reflectance spectroscopy VIS-NIR (400-2500 nm) of soils has been utilized for 

many years in soil studies typically as a means of relating spectra to bulk soil properties such as the kind and 

amount of iron oxides (Sellitto et al. 2009). The relationships between these broad properties of soils and 

reflectance spectra have been established by utilizing correlation statistics between soil spectra and 

independently measured soil properties. The spectral reflectance data used in this study allows for the 

identification of specific minerals based on the wavelength position and shape of diagnostic absorption 

features. Currently, there are no studies that use these techniques to study the chemical and mineralogical 

composition of volcanic soils. Therefore, the aim of this study was to characterize mineralogical composition 

of several volcanic ash soils using diffuse reflectance spectroscopy (DRS).  
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Methods 
Sample site  

We examined a total of 50 samples from 5 soil profiles from the Matese Massif in southern Italy. Each 

sample was air-dried, ground, sieved (<2 mm), and then split into two sub-samples. One was used for the 

spectroscopic measurements and the other for mineralogical analysis. 

 

Mineralogical Analysis 

 Diffraction patterns were obtained using a PANalytical X’Pert PRO MPD x-ray diffraction system 

(PANalytical, Almelo, The Netherlands) equipped with a PW3050/60 θ-θ goniometer and a Co-target x-ray 

tube. Aliquots of the clay samples were saturated with 0.5 M MgCl2 or 1 M, KCl solutions. The Mg-

saturated samples were solvated with glycerol by adding glycerol directly onto the moist clay, then x-rayed. 

The air-dried, K-saturated clay fractions were x-rayed at room temperature and after heating to 100, 300, and 

550° C for 2 h at each temperature. The <2 µm fraction was used for X-ray diffraction (XRD) and 

differential X-ray diffraction (DXRD), as well as for selective dissolution by acid ammonium oxalate 

(Schulze 1981).  

 

Reflectance Measurements 

Diffuse reflectance measurements were obtained by using a Jasco 560 UV-visible spectrophotometer, 

equipped with an integrating sphere, according to the method proposed by Torrent and Barrón (1993). 

Briefly, air-dried soils, previously sieved at <2 mm, were vigorously ground in an agate mortar for at least 10 

minutes in order to exclude the influence of micro-aggregation. Then, the samples were gently pressed into a 

special circular sample holder (diameter of 10 mm) against unglazed white paper in order to avoid undesired 

particle orientation, and also to prevent material from falling into the integrating sphere. The integrating 

sphere has a geometry that simultaneously allows the measurement of the sample and a white standard 

(polytetrafluorinethylene), which was assumed to have 100% reflectance at all wavelengths. 

 

Results  
The reflectance measurements show substantial homogeneity of the mineraological composition from sample 

to sample. The absorption at 1400 nm is due to vibrations of the water molecules and OH
- 
groups (O-H 

stretching), whereas absorption at 1900 nm is due to water absorbed into 2:1 minerals (bending process). . 

(Figure 1). 
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Figure 1.  Comparation of the mean spectral reflectance curve from clay fraction of the MAT8 pedon BC6 and 

BC7 horizons. 

 

The absorption at 2200 nm indicates the presence of kaolinite and is due to O-H stretching and Al-OH 

bending. These vibrations are present in both expandable and non-expandable mineral structures. The 

presence of kaolinite in most of the analyzed soils was confirmed by the presence of absorption bands at 

2208, 2160, 2242, and 2290 nm. All these absorption bands are due to vibrational processes (bending Al-

OH).  
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Figure 2.  Relation between relative intensity of the diffraction peaks at 0.70 nm and the depth of the absorption 

at 2200 nm in the reflectance spectra. 

 

The characteristic absorption bands obtained from the reflectance spectra were compared to the relative 

intensities of the diagnostic x-ray diffraction peaks found in the clay fraction. In particular, the depth of the 

bands centered at 1400, 1900 and 2200 nm was related to the relative intensity, the full width at half 

maximum (FWHM) and the symmetry of mineral-specific peaks of clay minerals in the x-ray patterns. 

Statistical analysis showed that none of these bands were significantly correlated with the relative intensities 

of peaks derived from diffractograms. The only significant correlation observed was between the relative 

intensity of the kaolinite 0.72 nm peak and the absorption depth at 2200 nm in the reflectance spectrum 

(Figure 2).  

 

This correlation is present only in soils having a narrow symmetric peak at 0.72 nm that is associated with 

greater kaolinite crystallinity. Moreover, this correlation indicates that both kaolinite crystallinity and 

abundance influence the reflection band at 2200 nm. A second band at 2260 nm (Figure 3) is associated with 

the presence of gibbsite (Demattê and Garcia 1999; Demattê et al. 2004). However, soils that have shown the 

presence of gibbsite have an absorption band at 2226 nm in their horizons. Moreover, the presence of this 

type of band was found in some horizons even though gibbsite was not found by x-ray diffraction analysis.  

This results leads to two considerations: the first is that the reflectance measurements are very sensitive and 

as precise as x-ray diffraction analysis; second, the presence of large amounts of exchange-Al could  affect 

the absorption band at 2260 nm. 
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Figure 3.  The absorption bands around 2200 and 2260 nm, the  band at 2260 nm is associated with the presence 

of gibbsite. 



© 2010 19th World Congress of Soil Science, Soil Solutions for a Changing World 

1 – 6 August 2010, Brisbane, Australia.  Published on DVD. 
132 

Conclusions 
Diffuse reflectance spectroscopy (DRS) in the VIS-NIR (400-2500 nm) region can be used as a rapid 

screening method to study the clay mineralogy of volcanic soils. Diffuse reflectance of some Andisols 

sampled in southern Italy is influenced by specific mineral composition. In particular, the absorption band at 

2200 nm is correlated to kaolinite content, and the presence of gibbsite is correlated to an absorption band at 

2260 nm. These results show that laboratory spectrometric measurements can be used to rapidly acquire 

reliable information on the mineralogical properties of volcanic soils. The evaluation of diffuse soil spectra 

obtained in the laboratory suggests that this approach for soil aluminum oxide estimation is comparable to 

other more well known techniques such as x-ray diffraction. 
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